
If 3x – 4y = 5 and xy = 3, then find $27{{\text{x}}^3} - 64{{\text{y}}^3}$.
$
{\text{A}}{\text{. 125}} \\
{\text{B}}{\text{. 665}} \\
{\text{C}}{\text{. 225}} \\
{\text{D}}{\text{. 985}} \\
$
Answer
617.1k+ views
Hint: To compute the given term, we use ${{\text{a}}^3} - {{\text{b}}^3}$ formula and expand the term $27{{\text{x}}^3} - 64{{\text{y}}^3}$ and we use the formula ${\left( {{\text{a - b}}} \right)^2}$ to obtain the required terms and simplify it.
Complete step-by-step answer:
We know,
$
{{\text{a}}^3} - {{\text{b}}^3}{\text{ = }}\left( {{\text{a - b}}} \right)\left( {{{\text{a}}^2} + {\text{ab + }}{{\text{b}}^2}} \right) \\
{\left( {{\text{a - b}}} \right)^2}{\text{ = }}{{\text{a}}^2} + {{\text{b}}^2} - {\text{2ab}} \\
$
Now let us simplify, $27{{\text{x}}^3} - 64{{\text{y}}^3}$ using the formula ${{\text{a}}^3} - {{\text{b}}^3}{\text{ = }}\left( {{\text{a - b}}} \right)\left( {{{\text{a}}^2} + {\text{ab + }}{{\text{b}}^2}} \right)$
Where a = 3x and b = 4y
$
= {\left( {3{\text{x}}} \right)^3} - {\left( {{\text{4y}}} \right)^3} \\
= \left( {{\text{3x - 4y}}} \right)\left( {{{\left( {{\text{3x}}} \right)}^2} + {\text{3x}}{\text{.4y + }}{{\left( {{\text{4y}}} \right)}^2}} \right) \\
= \left( {{\text{3x - 4y}}} \right)\left( {{\text{9}}{{\text{x}}^2} + 12{\text{xy + 16}}{{\text{y}}^2}} \right){\text{ - - - (1)}} \\
$
Given Data, 3x – 4y = 5
Squaring on both sides of this equation,
$ \Rightarrow {\left( {{\text{3x - 4y}}} \right)^2} = {\text{ }}{{\text{5}}^2}$
It is of the form${\left( {{\text{a - b}}} \right)^2}{\text{ = }}{{\text{a}}^2} + {{\text{b}}^2} - {\text{2ab}}$, where a = 3x and b = 4y
$ \Rightarrow {\text{9}}{{\text{x}}^2} + 16{{\text{y}}^2} - 24{\text{xy = 25}}$
Now we add and subtract 12xy to the equation, we get
$
\Rightarrow {\text{9}}{{\text{x}}^2} + 16{{\text{y}}^2} - 24{\text{xy + 12xy - 12xy = 25}} \\
\Rightarrow {\text{9}}{{\text{x}}^2} + 16{{\text{y}}^2} - 36{\text{xy + 12xy = 25}} \\
\Rightarrow {\text{9}}{{\text{x}}^2} + 16{{\text{y}}^2}{\text{ + 12xy = 25 + 36xy}} \\
$
Substituting the given Data: xy = 3 in the above equation we get,
$
\Rightarrow {\text{9}}{{\text{x}}^2} + 16{{\text{y}}^2}{\text{ + 12xy = 25 + 36}} \times {\text{3}} \\
\Rightarrow {\text{9}}{{\text{x}}^2} + 16{{\text{y}}^2}{\text{ + 12xy = 25 + 108}} \\
\Rightarrow {\text{9}}{{\text{x}}^2} + 16{{\text{y}}^2}{\text{ + 12xy = 133}} \\
$
Now, substituting ${\text{9}}{{\text{x}}^2} + 16{{\text{y}}^2}{\text{ + 12xy = 133}}$ and 3x – 4y = 5 in equation (1), we get
⟹$\left( {{\text{3x - 4y}}} \right)\left( {{\text{9}}{{\text{x}}^2} + 12{\text{xy + 16}}{{\text{y}}^2}} \right)$
$
\Rightarrow 27{{\text{x}}^3} - 64{{\text{y}}^3} = {\text{ 5 }} \times {\text{ 133}} \\
\Rightarrow 27{{\text{x}}^3} - 64{{\text{y}}^3}{\text{ = 665}} \\
$
Hence Option B is the correct answer.
Note: In order to solve questions of this type the key is to identify the nature of the given question and use the formula that fits and we use it accordingly. Having adequate knowledge in algebraic formulae is essential, i.e. in this case that is, ${{\text{a}}^3} - {{\text{b}}^3}$ and then using ${\left( {{\text{a - b}}} \right)^2}$ to get the required terms.
Complete step-by-step answer:
We know,
$
{{\text{a}}^3} - {{\text{b}}^3}{\text{ = }}\left( {{\text{a - b}}} \right)\left( {{{\text{a}}^2} + {\text{ab + }}{{\text{b}}^2}} \right) \\
{\left( {{\text{a - b}}} \right)^2}{\text{ = }}{{\text{a}}^2} + {{\text{b}}^2} - {\text{2ab}} \\
$
Now let us simplify, $27{{\text{x}}^3} - 64{{\text{y}}^3}$ using the formula ${{\text{a}}^3} - {{\text{b}}^3}{\text{ = }}\left( {{\text{a - b}}} \right)\left( {{{\text{a}}^2} + {\text{ab + }}{{\text{b}}^2}} \right)$
Where a = 3x and b = 4y
$
= {\left( {3{\text{x}}} \right)^3} - {\left( {{\text{4y}}} \right)^3} \\
= \left( {{\text{3x - 4y}}} \right)\left( {{{\left( {{\text{3x}}} \right)}^2} + {\text{3x}}{\text{.4y + }}{{\left( {{\text{4y}}} \right)}^2}} \right) \\
= \left( {{\text{3x - 4y}}} \right)\left( {{\text{9}}{{\text{x}}^2} + 12{\text{xy + 16}}{{\text{y}}^2}} \right){\text{ - - - (1)}} \\
$
Given Data, 3x – 4y = 5
Squaring on both sides of this equation,
$ \Rightarrow {\left( {{\text{3x - 4y}}} \right)^2} = {\text{ }}{{\text{5}}^2}$
It is of the form${\left( {{\text{a - b}}} \right)^2}{\text{ = }}{{\text{a}}^2} + {{\text{b}}^2} - {\text{2ab}}$, where a = 3x and b = 4y
$ \Rightarrow {\text{9}}{{\text{x}}^2} + 16{{\text{y}}^2} - 24{\text{xy = 25}}$
Now we add and subtract 12xy to the equation, we get
$
\Rightarrow {\text{9}}{{\text{x}}^2} + 16{{\text{y}}^2} - 24{\text{xy + 12xy - 12xy = 25}} \\
\Rightarrow {\text{9}}{{\text{x}}^2} + 16{{\text{y}}^2} - 36{\text{xy + 12xy = 25}} \\
\Rightarrow {\text{9}}{{\text{x}}^2} + 16{{\text{y}}^2}{\text{ + 12xy = 25 + 36xy}} \\
$
Substituting the given Data: xy = 3 in the above equation we get,
$
\Rightarrow {\text{9}}{{\text{x}}^2} + 16{{\text{y}}^2}{\text{ + 12xy = 25 + 36}} \times {\text{3}} \\
\Rightarrow {\text{9}}{{\text{x}}^2} + 16{{\text{y}}^2}{\text{ + 12xy = 25 + 108}} \\
\Rightarrow {\text{9}}{{\text{x}}^2} + 16{{\text{y}}^2}{\text{ + 12xy = 133}} \\
$
Now, substituting ${\text{9}}{{\text{x}}^2} + 16{{\text{y}}^2}{\text{ + 12xy = 133}}$ and 3x – 4y = 5 in equation (1), we get
⟹$\left( {{\text{3x - 4y}}} \right)\left( {{\text{9}}{{\text{x}}^2} + 12{\text{xy + 16}}{{\text{y}}^2}} \right)$
$
\Rightarrow 27{{\text{x}}^3} - 64{{\text{y}}^3} = {\text{ 5 }} \times {\text{ 133}} \\
\Rightarrow 27{{\text{x}}^3} - 64{{\text{y}}^3}{\text{ = 665}} \\
$
Hence Option B is the correct answer.
Note: In order to solve questions of this type the key is to identify the nature of the given question and use the formula that fits and we use it accordingly. Having adequate knowledge in algebraic formulae is essential, i.e. in this case that is, ${{\text{a}}^3} - {{\text{b}}^3}$ and then using ${\left( {{\text{a - b}}} \right)^2}$ to get the required terms.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Who is eligible for RTE class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE


