
If $3\tan \theta \tan \phi =1$, then
A. $\cos \left( \theta +\phi \right)=\cos \left( \theta -\phi \right)$
B. $\cos \left( \theta +\phi \right)=2\cos \left( \theta -\phi \right)$
C. $\cos \left( \theta +\phi \right)=-\cos \left( \theta -\phi \right)$
D. $2\cos \left( \theta +\phi \right)=\cos \left( \theta -\phi \right)$
Answer
493.2k+ views
Hint: We first use the trigonometric ratio relation of $\tan x=\dfrac{\sin x}{\cos x}$. We add $\cos \theta \cos \phi $ both sides of the equation. We use the associative angle formulas of \[\cos \theta \cos \phi -\sin \theta \sin \phi =\cos \left( \theta +\phi \right)\], \[\sin \theta \sin \phi +\cos \theta \cos \phi =\cos \left( \theta -\phi \right)\] to find the relation between the cos ratios.
Complete step-by-step answer:
We break the given equation $3\tan \theta \tan \phi =1$ where $\tan x=\dfrac{\sin x}{\cos x}$.
So, $3\tan \theta \tan \phi =3\dfrac{\sin \theta \sin \phi }{\cos \theta \cos \phi }=1$.
The cross multiplication gives $3\sin \theta \sin \phi =\cos \theta \cos \phi $.
Now we add $\cos \theta \cos \phi $ both sides of the equation and get
\[\begin{align}
& 3\sin \theta \sin \phi +\cos \theta \cos \phi =\cos \theta \cos \phi +\cos \theta \cos \phi \\
& \Rightarrow 3\sin \theta \sin \phi +\cos \theta \cos \phi =2\cos \theta \cos \phi \\
& \Rightarrow \sin \theta \sin \phi +\cos \theta \cos \phi =2\cos \theta \cos \phi -2\sin \theta \sin \phi \\
\end{align}\]
We now apply the associative angle formulas of
\[\begin{align}
& \cos \theta \cos \phi -\sin \theta \sin \phi =\cos \left( \theta +\phi \right) \\
& \sin \theta \sin \phi +\cos \theta \cos \phi =\cos \left( \theta -\phi \right) \\
\end{align}\]
Therefore,
\[\begin{align}
& \sin \theta \sin \phi +\cos \theta \cos \phi =2\cos \theta \cos \phi -2\sin \theta \sin \phi \\
& \Rightarrow \sin \theta \sin \phi +\cos \theta \cos \phi =2\left( \cos \theta \cos \phi -\sin \theta \sin \phi \right) \\
& \Rightarrow \cos \left( \theta -\phi \right)=2\cos \left( \theta +\phi \right) \\
\end{align}\]
The correct option is D.
So, the correct answer is “Option D”.
Note: The trigonometric equation is tough to assume which thing to add, therefore, it is more likely to first solve the given options in a rough manner to understand the options which give the statement. We then find out the additional expression through back process calculation.
Complete step-by-step answer:
We break the given equation $3\tan \theta \tan \phi =1$ where $\tan x=\dfrac{\sin x}{\cos x}$.
So, $3\tan \theta \tan \phi =3\dfrac{\sin \theta \sin \phi }{\cos \theta \cos \phi }=1$.
The cross multiplication gives $3\sin \theta \sin \phi =\cos \theta \cos \phi $.
Now we add $\cos \theta \cos \phi $ both sides of the equation and get
\[\begin{align}
& 3\sin \theta \sin \phi +\cos \theta \cos \phi =\cos \theta \cos \phi +\cos \theta \cos \phi \\
& \Rightarrow 3\sin \theta \sin \phi +\cos \theta \cos \phi =2\cos \theta \cos \phi \\
& \Rightarrow \sin \theta \sin \phi +\cos \theta \cos \phi =2\cos \theta \cos \phi -2\sin \theta \sin \phi \\
\end{align}\]
We now apply the associative angle formulas of
\[\begin{align}
& \cos \theta \cos \phi -\sin \theta \sin \phi =\cos \left( \theta +\phi \right) \\
& \sin \theta \sin \phi +\cos \theta \cos \phi =\cos \left( \theta -\phi \right) \\
\end{align}\]
Therefore,
\[\begin{align}
& \sin \theta \sin \phi +\cos \theta \cos \phi =2\cos \theta \cos \phi -2\sin \theta \sin \phi \\
& \Rightarrow \sin \theta \sin \phi +\cos \theta \cos \phi =2\left( \cos \theta \cos \phi -\sin \theta \sin \phi \right) \\
& \Rightarrow \cos \left( \theta -\phi \right)=2\cos \left( \theta +\phi \right) \\
\end{align}\]
The correct option is D.
So, the correct answer is “Option D”.
Note: The trigonometric equation is tough to assume which thing to add, therefore, it is more likely to first solve the given options in a rough manner to understand the options which give the statement. We then find out the additional expression through back process calculation.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

