
If $3\cot A = 4$, check whether $\dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}} = {\cos ^2}A - {\sin ^2}A$ or not?
Answer
556.5k+ views
Hint: With the help of the condition given i.e. $3\cot A = 4$, figure out the trigonometric values which are needed and substitute In $\dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}} = {\cos ^2}A - {\sin ^2}A$, and check whether it satisfies or not.
Complete step-by-step answer:
Given that $3\cot A = 4$, Draw a right angled triangle and find the value needed, with the help of the values, figure out the trigonometric values needed.
We know that $\cot A = \dfrac{{Adjacent\,side}}{{Opposite\,side}} = \dfrac{4}{3}$
Take $\dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$and substitute the value of $\tan A$, where $\tan A = \dfrac{3}{4}$
$
\Rightarrow \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}} \\
\Rightarrow \dfrac{{1 - {{\left( {\dfrac{3}{4}} \right)}^2}}}{{1 + {{\left( {\dfrac{3}{4}} \right)}^2}}} \\
\Rightarrow \dfrac{{1 - \left( {\dfrac{9}{{16}}} \right)}}{{1 + \left( {\dfrac{9}{{16}}} \right)}} \\
\Rightarrow \dfrac{{\left( {\dfrac{{16 - 9}}{{16}}} \right)}}{{\left( {\dfrac{{16 + 9}}{{16}}} \right)}} \\
\Rightarrow \dfrac{7}{{25}}.......\left( 1 \right) \\
$
Now take ${\cos ^2}A - {\sin ^2}A$and substitute the value of $\cos A$ and $\sin A$, where $\cos A = \dfrac{{Adjacent\,side}}{{{\text{Hypotenuse}}\,{\text{side}}}} = \dfrac{4}{5}$and $\sin A = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}} = \dfrac{3}{5}$
$
\Rightarrow {\cos ^2}A - {\sin ^2}A \\
\Rightarrow {\left( {\dfrac{4}{5}} \right)^2} - {\left( {\dfrac{3}{5}} \right)^2} \\
\Rightarrow \dfrac{{16}}{{25}} - \dfrac{9}{{25}} \\
\Rightarrow \dfrac{7}{{25}}.......\left( 2 \right) \\
$
So, here from (1) and (2), both satisfy the equation. Hence, $\dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}} = {\cos ^2}A - {\sin ^2}A$.
Note: While solving trigonometric problems, know the values of trigonometric functions, it becomes easy while solving trigonometric problems. Try to draw the diagram while solving trigonometric problems.
Complete step-by-step answer:
Given that $3\cot A = 4$, Draw a right angled triangle and find the value needed, with the help of the values, figure out the trigonometric values needed.
We know that $\cot A = \dfrac{{Adjacent\,side}}{{Opposite\,side}} = \dfrac{4}{3}$
Take $\dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$and substitute the value of $\tan A$, where $\tan A = \dfrac{3}{4}$
$
\Rightarrow \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}} \\
\Rightarrow \dfrac{{1 - {{\left( {\dfrac{3}{4}} \right)}^2}}}{{1 + {{\left( {\dfrac{3}{4}} \right)}^2}}} \\
\Rightarrow \dfrac{{1 - \left( {\dfrac{9}{{16}}} \right)}}{{1 + \left( {\dfrac{9}{{16}}} \right)}} \\
\Rightarrow \dfrac{{\left( {\dfrac{{16 - 9}}{{16}}} \right)}}{{\left( {\dfrac{{16 + 9}}{{16}}} \right)}} \\
\Rightarrow \dfrac{7}{{25}}.......\left( 1 \right) \\
$
Now take ${\cos ^2}A - {\sin ^2}A$and substitute the value of $\cos A$ and $\sin A$, where $\cos A = \dfrac{{Adjacent\,side}}{{{\text{Hypotenuse}}\,{\text{side}}}} = \dfrac{4}{5}$and $\sin A = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}} = \dfrac{3}{5}$
$
\Rightarrow {\cos ^2}A - {\sin ^2}A \\
\Rightarrow {\left( {\dfrac{4}{5}} \right)^2} - {\left( {\dfrac{3}{5}} \right)^2} \\
\Rightarrow \dfrac{{16}}{{25}} - \dfrac{9}{{25}} \\
\Rightarrow \dfrac{7}{{25}}.......\left( 2 \right) \\
$
So, here from (1) and (2), both satisfy the equation. Hence, $\dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}} = {\cos ^2}A - {\sin ^2}A$.
Note: While solving trigonometric problems, know the values of trigonometric functions, it becomes easy while solving trigonometric problems. Try to draw the diagram while solving trigonometric problems.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

