
If $3\cot A = 4$, check whether $\dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}} = {\cos ^2}A - {\sin ^2}A$ or not?
Answer
562.5k+ views
Hint: With the help of the condition given i.e. $3\cot A = 4$, figure out the trigonometric values which are needed and substitute In $\dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}} = {\cos ^2}A - {\sin ^2}A$, and check whether it satisfies or not.
Complete step-by-step answer:
Given that $3\cot A = 4$, Draw a right angled triangle and find the value needed, with the help of the values, figure out the trigonometric values needed.
We know that $\cot A = \dfrac{{Adjacent\,side}}{{Opposite\,side}} = \dfrac{4}{3}$
Take $\dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$and substitute the value of $\tan A$, where $\tan A = \dfrac{3}{4}$
$
\Rightarrow \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}} \\
\Rightarrow \dfrac{{1 - {{\left( {\dfrac{3}{4}} \right)}^2}}}{{1 + {{\left( {\dfrac{3}{4}} \right)}^2}}} \\
\Rightarrow \dfrac{{1 - \left( {\dfrac{9}{{16}}} \right)}}{{1 + \left( {\dfrac{9}{{16}}} \right)}} \\
\Rightarrow \dfrac{{\left( {\dfrac{{16 - 9}}{{16}}} \right)}}{{\left( {\dfrac{{16 + 9}}{{16}}} \right)}} \\
\Rightarrow \dfrac{7}{{25}}.......\left( 1 \right) \\
$
Now take ${\cos ^2}A - {\sin ^2}A$and substitute the value of $\cos A$ and $\sin A$, where $\cos A = \dfrac{{Adjacent\,side}}{{{\text{Hypotenuse}}\,{\text{side}}}} = \dfrac{4}{5}$and $\sin A = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}} = \dfrac{3}{5}$
$
\Rightarrow {\cos ^2}A - {\sin ^2}A \\
\Rightarrow {\left( {\dfrac{4}{5}} \right)^2} - {\left( {\dfrac{3}{5}} \right)^2} \\
\Rightarrow \dfrac{{16}}{{25}} - \dfrac{9}{{25}} \\
\Rightarrow \dfrac{7}{{25}}.......\left( 2 \right) \\
$
So, here from (1) and (2), both satisfy the equation. Hence, $\dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}} = {\cos ^2}A - {\sin ^2}A$.
Note: While solving trigonometric problems, know the values of trigonometric functions, it becomes easy while solving trigonometric problems. Try to draw the diagram while solving trigonometric problems.
Complete step-by-step answer:
Given that $3\cot A = 4$, Draw a right angled triangle and find the value needed, with the help of the values, figure out the trigonometric values needed.
We know that $\cot A = \dfrac{{Adjacent\,side}}{{Opposite\,side}} = \dfrac{4}{3}$
Take $\dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$and substitute the value of $\tan A$, where $\tan A = \dfrac{3}{4}$
$
\Rightarrow \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}} \\
\Rightarrow \dfrac{{1 - {{\left( {\dfrac{3}{4}} \right)}^2}}}{{1 + {{\left( {\dfrac{3}{4}} \right)}^2}}} \\
\Rightarrow \dfrac{{1 - \left( {\dfrac{9}{{16}}} \right)}}{{1 + \left( {\dfrac{9}{{16}}} \right)}} \\
\Rightarrow \dfrac{{\left( {\dfrac{{16 - 9}}{{16}}} \right)}}{{\left( {\dfrac{{16 + 9}}{{16}}} \right)}} \\
\Rightarrow \dfrac{7}{{25}}.......\left( 1 \right) \\
$
Now take ${\cos ^2}A - {\sin ^2}A$and substitute the value of $\cos A$ and $\sin A$, where $\cos A = \dfrac{{Adjacent\,side}}{{{\text{Hypotenuse}}\,{\text{side}}}} = \dfrac{4}{5}$and $\sin A = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}} = \dfrac{3}{5}$
$
\Rightarrow {\cos ^2}A - {\sin ^2}A \\
\Rightarrow {\left( {\dfrac{4}{5}} \right)^2} - {\left( {\dfrac{3}{5}} \right)^2} \\
\Rightarrow \dfrac{{16}}{{25}} - \dfrac{9}{{25}} \\
\Rightarrow \dfrac{7}{{25}}.......\left( 2 \right) \\
$
So, here from (1) and (2), both satisfy the equation. Hence, $\dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}} = {\cos ^2}A - {\sin ^2}A$.
Note: While solving trigonometric problems, know the values of trigonometric functions, it becomes easy while solving trigonometric problems. Try to draw the diagram while solving trigonometric problems.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

