
If $340{\text{ g}}$ of a mixture of ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ in the incorrect ratio gave $20\% $ yield of ${\text{N}}{{\text{H}}_{\text{3}}}$, the mass produced will be:
A. $16{\text{ g}}$
B. $17{\text{ g}}$
C. $20{\text{ g}}$
D. $68{\text{ g}}$
Answer
585k+ views
Hint: Follow the given steps to calculate the mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ produced when the yield of reaction is $20\% $ and the mass of mixture of ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ is $340{\text{ g}}$:
Write the balanced chemical equation.
Determine the molar masses of ${{\text{N}}_{\text{2}}}$, ${{\text{H}}_{\text{2}}}$ and ${\text{N}}{{\text{H}}_{\text{3}}}$.
Determine the masses of ${{\text{N}}_{\text{2}}}$, ${{\text{H}}_{\text{2}}}$ and ${\text{N}}{{\text{H}}_{\text{3}}}$ for $100\% $ yield.
Determine the mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ produced when the yield of reaction is $20\% $.
Determine the mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ produced when the yield of reaction is $20\% $ and the mass of mixture of ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ is $340{\text{ g}}$.
Complete step by step answer:
Write the balanced chemical equation as follows:
In the reaction, ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ react to produce ${\text{N}}{{\text{H}}_{\text{3}}}$. Thus, the chemical equation is,
${{\text{N}}_{\text{2}}} + {{\text{H}}_{\text{2}}} \to {\text{N}}{{\text{H}}_{\text{3}}}$
Count the number of each atom on the reactant and product side. Thus,
\[
{{\text{N}}_{\text{2}}} + {{\text{H}}_{\text{2}}} \to {\text{N}}{{\text{H}}_{\text{3}}} \\
{\text{ N}} - 2{\text{ N}} - 1 \\
{\text{ H}} - 2{\text{ H}} - 3 \\
\]
Change the coefficient of ${\text{N}}{{\text{H}}_{\text{3}}}$ to $2$ to balance the ${\text{N}}$ atoms. Thus,
\[
{{\text{N}}_{\text{2}}} + {{\text{H}}_{\text{2}}} \to 2{\text{N}}{{\text{H}}_{\text{3}}} \\
{\text{ N}} - 2{\text{ N}} - 2 \\
{\text{ H}} - 2{\text{ H}} - 6 \\
\]
Change the coefficient of ${{\text{H}}_{\text{2}}}$ to $3$ to balance the ${\text{H}}$ atoms. Thus,
\[
{{\text{N}}_{\text{2}}} + 3{{\text{H}}_{\text{2}}} \to 2{\text{N}}{{\text{H}}_{\text{3}}} \\
{\text{ N}} - 2{\text{ N}} - 2 \\
{\text{ H}} - 6{\text{ H}} - 6 \\
\]
The number of all the atoms on the reactant and product side are equal. Thus, the balanced chemical equation is,
\[{{\text{N}}_{\text{2}}} + 3{{\text{H}}_{\text{2}}} \to 2{\text{N}}{{\text{H}}_{\text{3}}}\]
Step 2: Determine the molar masses of ${{\text{N}}_{\text{2}}}$, ${{\text{H}}_{\text{2}}}$ and ${\text{N}}{{\text{H}}_{\text{3}}}$ as follows:
Calculate the molar mass of ${{\text{N}}_{\text{2}}}$ as follows:
$
{\text{Molar mass of }}{{\text{N}}_{\text{2}}} = 2 \times {\text{Mass of N}} \\
= 2 \times 14 \\
{\text{Molar mass of }}{{\text{N}}_{\text{2}}} = 28{\text{ g mo}}{{\text{l}}^{ - 1}} \\
$
Thus, the molar mass of ${{\text{N}}_{\text{2}}}$ is $28{\text{ g mo}}{{\text{l}}^{ - 1}}$.
Calculate the molar mass of ${{\text{H}}_{\text{2}}}$ as follows:
$
{\text{Molar mass of }}{{\text{H}}_{\text{2}}} = 2 \times {\text{Mass of H}} \\
= 2 \times 1 \\
{\text{Molar mass of }}{{\text{H}}_{\text{2}}} = 2{\text{ g mo}}{{\text{l}}^{ - 1}} \\
$
Thus, the molar mass of ${{\text{H}}_{\text{2}}}$ is $2{\text{ g mo}}{{\text{l}}^{ - 1}}$.
Calculate the molar mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ as follows:
$
{\text{Molar mass of N}}{{\text{H}}_{\text{3}}} = \left( {1 \times {\text{Mass of N}}} \right) + \left( {3 \times {\text{Mass of H}}} \right) \\
= \left( {1 \times 14} \right) + \left( {3 \times 1} \right) \\
= 14 + 3 \\
{\text{Molar mass of N}}{{\text{H}}_{\text{3}}} = 17{\text{ g mo}}{{\text{l}}^{ - 1}} \\
$
Thus, the molar mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ is $17{\text{ g mo}}{{\text{l}}^{ - 1}}$.
Step 3: Determine the masses of ${{\text{N}}_{\text{2}}}$, ${{\text{H}}_{\text{2}}}$ and ${\text{N}}{{\text{H}}_{\text{3}}}$ as follows:
From, the reaction stoichiometry, $1{\text{ mol }}{{\text{N}}_2}$ reacts with ${\text{3 mol }}{{\text{H}}_{\text{2}}}$ to produce ${\text{2 mol N}}{{\text{H}}_{\text{3}}}$.
Thus,
$1{\text{ mol }}{{\text{N}}_2} = 1 \times 28 = 28{\text{ g}}$
${\text{3 mol }}{{\text{H}}_{\text{2}}} = 3 \times 2 = 6{\text{ g}}$
${\text{2 mol N}}{{\text{H}}_{\text{3}}} = 2 \times 17 = 34{\text{ g}}$
Thus, $28{\text{ g}}$ of ${{\text{N}}_{\text{2}}}$ reacts with $6{\text{ g}}$ of ${{\text{H}}_{\text{2}}}$ to produce $34{\text{ g}}$ of ${\text{N}}{{\text{H}}_{\text{3}}}$.
Mass of ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ mixture $ = 28 + 6 = 34{\text{ g}}$.
Thus, $34{\text{ g}}$ of mixture of ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ reacts to produce $34{\text{ g}}$ of ${\text{N}}{{\text{H}}_{\text{3}}}$. This id $100\% $ yield.
Step 4: Determine the mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ produced when the yield of reaction is $20\% $ as follows:
$100\% $ yield produces $34{\text{ g}}$ of ${\text{N}}{{\text{H}}_{\text{3}}}$. Thus, the mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ produced when the yield of reaction is $20\% $ is,
$
{\text{Mass of N}}{{\text{H}}_3} = 34{\text{ g}} \times \dfrac{{20}}{{100}} \\
{\text{Mass of N}}{{\text{H}}_3} = 6.8{\text{ g}} \\
$
Thus, the mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ produced when the yield of reaction is $20\% $ is $6.8{\text{ g}}$.
Step 5: Determine the mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ produced when the yield of reaction is $20\% $ and the mass of mixture of ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ is $340{\text{ g}}$ as follows:
When the reaction yield is $20\% $, $34{\text{ g}}$ of mixture of ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ produces $6.8{\text{ g}}$ of ${\text{N}}{{\text{H}}_{\text{3}}}$. Thus, when the reaction yield is $20\% $, $340{\text{ g}}$ of mixture of ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ produces,
$
{\text{Mass of N}}{{\text{H}}_3} = 6.8{\text{ g N}}{{\text{H}}_3} \times \dfrac{{340{\text{ }}\not{{{\text{g mixture of }}{{\text{N}}_2}{\text{ and }}{{\text{H}}_2}}}}}{{34{\text{ }}\not{{{\text{g mixture of }}{{\text{N}}_2}{\text{ and }}{{\text{H}}_2}}}}} \\
{\text{Mass of N}}{{\text{H}}_3} = 68{\text{ g}} \\
$
Thus, the mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ produced when the yield of reaction is $20\% $ and the mass of mixture of ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ is $340{\text{ g}}$ is $68{\text{ g}}$.
So, the correct answer is Option D.
Note:
Write the correct balanced chemical equation for the given reaction. Unbalanced chemical equations can lead to incurred masses of the reactants and products.
Write the balanced chemical equation.
Determine the molar masses of ${{\text{N}}_{\text{2}}}$, ${{\text{H}}_{\text{2}}}$ and ${\text{N}}{{\text{H}}_{\text{3}}}$.
Determine the masses of ${{\text{N}}_{\text{2}}}$, ${{\text{H}}_{\text{2}}}$ and ${\text{N}}{{\text{H}}_{\text{3}}}$ for $100\% $ yield.
Determine the mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ produced when the yield of reaction is $20\% $.
Determine the mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ produced when the yield of reaction is $20\% $ and the mass of mixture of ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ is $340{\text{ g}}$.
Complete step by step answer:
Write the balanced chemical equation as follows:
In the reaction, ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ react to produce ${\text{N}}{{\text{H}}_{\text{3}}}$. Thus, the chemical equation is,
${{\text{N}}_{\text{2}}} + {{\text{H}}_{\text{2}}} \to {\text{N}}{{\text{H}}_{\text{3}}}$
Count the number of each atom on the reactant and product side. Thus,
\[
{{\text{N}}_{\text{2}}} + {{\text{H}}_{\text{2}}} \to {\text{N}}{{\text{H}}_{\text{3}}} \\
{\text{ N}} - 2{\text{ N}} - 1 \\
{\text{ H}} - 2{\text{ H}} - 3 \\
\]
Change the coefficient of ${\text{N}}{{\text{H}}_{\text{3}}}$ to $2$ to balance the ${\text{N}}$ atoms. Thus,
\[
{{\text{N}}_{\text{2}}} + {{\text{H}}_{\text{2}}} \to 2{\text{N}}{{\text{H}}_{\text{3}}} \\
{\text{ N}} - 2{\text{ N}} - 2 \\
{\text{ H}} - 2{\text{ H}} - 6 \\
\]
Change the coefficient of ${{\text{H}}_{\text{2}}}$ to $3$ to balance the ${\text{H}}$ atoms. Thus,
\[
{{\text{N}}_{\text{2}}} + 3{{\text{H}}_{\text{2}}} \to 2{\text{N}}{{\text{H}}_{\text{3}}} \\
{\text{ N}} - 2{\text{ N}} - 2 \\
{\text{ H}} - 6{\text{ H}} - 6 \\
\]
The number of all the atoms on the reactant and product side are equal. Thus, the balanced chemical equation is,
\[{{\text{N}}_{\text{2}}} + 3{{\text{H}}_{\text{2}}} \to 2{\text{N}}{{\text{H}}_{\text{3}}}\]
Step 2: Determine the molar masses of ${{\text{N}}_{\text{2}}}$, ${{\text{H}}_{\text{2}}}$ and ${\text{N}}{{\text{H}}_{\text{3}}}$ as follows:
Calculate the molar mass of ${{\text{N}}_{\text{2}}}$ as follows:
$
{\text{Molar mass of }}{{\text{N}}_{\text{2}}} = 2 \times {\text{Mass of N}} \\
= 2 \times 14 \\
{\text{Molar mass of }}{{\text{N}}_{\text{2}}} = 28{\text{ g mo}}{{\text{l}}^{ - 1}} \\
$
Thus, the molar mass of ${{\text{N}}_{\text{2}}}$ is $28{\text{ g mo}}{{\text{l}}^{ - 1}}$.
Calculate the molar mass of ${{\text{H}}_{\text{2}}}$ as follows:
$
{\text{Molar mass of }}{{\text{H}}_{\text{2}}} = 2 \times {\text{Mass of H}} \\
= 2 \times 1 \\
{\text{Molar mass of }}{{\text{H}}_{\text{2}}} = 2{\text{ g mo}}{{\text{l}}^{ - 1}} \\
$
Thus, the molar mass of ${{\text{H}}_{\text{2}}}$ is $2{\text{ g mo}}{{\text{l}}^{ - 1}}$.
Calculate the molar mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ as follows:
$
{\text{Molar mass of N}}{{\text{H}}_{\text{3}}} = \left( {1 \times {\text{Mass of N}}} \right) + \left( {3 \times {\text{Mass of H}}} \right) \\
= \left( {1 \times 14} \right) + \left( {3 \times 1} \right) \\
= 14 + 3 \\
{\text{Molar mass of N}}{{\text{H}}_{\text{3}}} = 17{\text{ g mo}}{{\text{l}}^{ - 1}} \\
$
Thus, the molar mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ is $17{\text{ g mo}}{{\text{l}}^{ - 1}}$.
Step 3: Determine the masses of ${{\text{N}}_{\text{2}}}$, ${{\text{H}}_{\text{2}}}$ and ${\text{N}}{{\text{H}}_{\text{3}}}$ as follows:
From, the reaction stoichiometry, $1{\text{ mol }}{{\text{N}}_2}$ reacts with ${\text{3 mol }}{{\text{H}}_{\text{2}}}$ to produce ${\text{2 mol N}}{{\text{H}}_{\text{3}}}$.
Thus,
$1{\text{ mol }}{{\text{N}}_2} = 1 \times 28 = 28{\text{ g}}$
${\text{3 mol }}{{\text{H}}_{\text{2}}} = 3 \times 2 = 6{\text{ g}}$
${\text{2 mol N}}{{\text{H}}_{\text{3}}} = 2 \times 17 = 34{\text{ g}}$
Thus, $28{\text{ g}}$ of ${{\text{N}}_{\text{2}}}$ reacts with $6{\text{ g}}$ of ${{\text{H}}_{\text{2}}}$ to produce $34{\text{ g}}$ of ${\text{N}}{{\text{H}}_{\text{3}}}$.
Mass of ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ mixture $ = 28 + 6 = 34{\text{ g}}$.
Thus, $34{\text{ g}}$ of mixture of ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ reacts to produce $34{\text{ g}}$ of ${\text{N}}{{\text{H}}_{\text{3}}}$. This id $100\% $ yield.
Step 4: Determine the mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ produced when the yield of reaction is $20\% $ as follows:
$100\% $ yield produces $34{\text{ g}}$ of ${\text{N}}{{\text{H}}_{\text{3}}}$. Thus, the mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ produced when the yield of reaction is $20\% $ is,
$
{\text{Mass of N}}{{\text{H}}_3} = 34{\text{ g}} \times \dfrac{{20}}{{100}} \\
{\text{Mass of N}}{{\text{H}}_3} = 6.8{\text{ g}} \\
$
Thus, the mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ produced when the yield of reaction is $20\% $ is $6.8{\text{ g}}$.
Step 5: Determine the mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ produced when the yield of reaction is $20\% $ and the mass of mixture of ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ is $340{\text{ g}}$ as follows:
When the reaction yield is $20\% $, $34{\text{ g}}$ of mixture of ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ produces $6.8{\text{ g}}$ of ${\text{N}}{{\text{H}}_{\text{3}}}$. Thus, when the reaction yield is $20\% $, $340{\text{ g}}$ of mixture of ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ produces,
$
{\text{Mass of N}}{{\text{H}}_3} = 6.8{\text{ g N}}{{\text{H}}_3} \times \dfrac{{340{\text{ }}\not{{{\text{g mixture of }}{{\text{N}}_2}{\text{ and }}{{\text{H}}_2}}}}}{{34{\text{ }}\not{{{\text{g mixture of }}{{\text{N}}_2}{\text{ and }}{{\text{H}}_2}}}}} \\
{\text{Mass of N}}{{\text{H}}_3} = 68{\text{ g}} \\
$
Thus, the mass of ${\text{N}}{{\text{H}}_{\text{3}}}$ produced when the yield of reaction is $20\% $ and the mass of mixture of ${{\text{N}}_{\text{2}}}$ and ${{\text{H}}_{\text{2}}}$ is $340{\text{ g}}$ is $68{\text{ g}}$.
So, the correct answer is Option D.
Note:
Write the correct balanced chemical equation for the given reaction. Unbalanced chemical equations can lead to incurred masses of the reactants and products.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

