
If 3 and $1 + \sqrt 2 $ are two roots of a cubic equation with rational coefficients , then the equation is
A) ${x^3} - 5{x^2} + 9x - 9 = 0$
B) ${x^3} - 3{x^2} - 4x + 12 = 0$
C) ${x^3} - 5{x^2} + 7x - 3 = 0$
D) None of these
Answer
555k+ views
Hint:
we are given two roots and since $1 + \sqrt 2 $is irrational and we know that irrational roots occur in pairs we get the other root to be $1 - \sqrt 2 $and now taking these roots to be a , b and c respectively we get the required cubic equation by ${x^3} - \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x - abc = 0$
Complete step by step solution:
We are given that 3 and $1 + \sqrt 2 $ are two roots. Since it is a cubic equation we need to have 3 roots. We know that irrational roots occur in conjugate pairs. Here $1 + \sqrt 2 $is an irrational root and hence the other root is $1 - \sqrt 2 $. Now we have the 3 roots of the cubic equation. We know that if a , b , c are the roots of a cubic equation then the cubic equation is given by
$ \Rightarrow {x^3} - \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x - abc = 0$
Hence here a = 3 and b = $1 + \sqrt 2 $and c =$1 - \sqrt 2 $
Hence our cubic equation is given by
$
\Rightarrow {x^3} - \left( {3 + 1 + \sqrt 2 + 1 - \sqrt 2 } \right){x^2} + \left( {3\left( {1 + \sqrt 2 } \right) + \left( {1 + \sqrt 2 } \right)\left( {1 - \sqrt 2 } \right) + 3\left( {1 - \sqrt 2 } \right)} \right)x - 3\left( {1 + \sqrt 2 } \right)\left( {1 - \sqrt 2 } \right) = 0 \\
\Rightarrow {x^3} - \left( {3 + 1 + 1} \right){x^2} + \left( {\left( {3 + 3\sqrt 2 } \right) + \left( {1 - 2} \right) + \left( {3 - 3\sqrt 2 } \right)} \right)x - 3\left( {1 - 2} \right) = 0 \\
\Rightarrow {x^3} - 5{x^2} + \left( {3 + 3\sqrt 2 - 1 + 3 - 3\sqrt 2 } \right)x - 3\left( { - 1} \right) = 0 \\
\Rightarrow {x^3} - 5{x^2} + 5x + 3 = 0 \\
$
Hence this the cubic equations whose roots are 3 , $1 + \sqrt 2 $ and $1 - \sqrt 2 $
Therefore the correct option is d.
Note:
Whenever three roots a , b , c are given then the cubic equation can also be found by
$ \Rightarrow \left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right) = 0$
Hence here a = 3 and b = $1 + \sqrt 2 $ and c =$1 - \sqrt 2 $
Hence our cubic equation is given by
$ \Rightarrow \left( {x - 3} \right)\left( {x - \left( {1 + \sqrt 2 } \right)} \right)\left( {x - \left( {1 - \sqrt 2 } \right)} \right) = 0$
Multiplying this we get the required equation
\[
\Rightarrow \left( {x - 3} \right)\left( {x - 1 - \sqrt 2 } \right)\left( {x - 1 + \sqrt 2 } \right) = 0 \\
\Rightarrow \left( {x - 3} \right)\left( {{{\left( {x - 1} \right)}^2} - 2} \right) = 0 \\
\Rightarrow \left( {x - 3} \right)\left( {{x^2} + 1 - 2x - 2} \right) = 0 \\
\Rightarrow \left( {x - 3} \right)\left( {{x^2} - 2x - 1} \right) = 0 \\
\Rightarrow {x^3} - 2{x^2} - x - 3{x^2} + 6x + 3 = 0 \\
\Rightarrow {x^3} - 5{x^2} + 5x + 3 = 0 \\
\]
we are given two roots and since $1 + \sqrt 2 $is irrational and we know that irrational roots occur in pairs we get the other root to be $1 - \sqrt 2 $and now taking these roots to be a , b and c respectively we get the required cubic equation by ${x^3} - \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x - abc = 0$
Complete step by step solution:
We are given that 3 and $1 + \sqrt 2 $ are two roots. Since it is a cubic equation we need to have 3 roots. We know that irrational roots occur in conjugate pairs. Here $1 + \sqrt 2 $is an irrational root and hence the other root is $1 - \sqrt 2 $. Now we have the 3 roots of the cubic equation. We know that if a , b , c are the roots of a cubic equation then the cubic equation is given by
$ \Rightarrow {x^3} - \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x - abc = 0$
Hence here a = 3 and b = $1 + \sqrt 2 $and c =$1 - \sqrt 2 $
Hence our cubic equation is given by
$
\Rightarrow {x^3} - \left( {3 + 1 + \sqrt 2 + 1 - \sqrt 2 } \right){x^2} + \left( {3\left( {1 + \sqrt 2 } \right) + \left( {1 + \sqrt 2 } \right)\left( {1 - \sqrt 2 } \right) + 3\left( {1 - \sqrt 2 } \right)} \right)x - 3\left( {1 + \sqrt 2 } \right)\left( {1 - \sqrt 2 } \right) = 0 \\
\Rightarrow {x^3} - \left( {3 + 1 + 1} \right){x^2} + \left( {\left( {3 + 3\sqrt 2 } \right) + \left( {1 - 2} \right) + \left( {3 - 3\sqrt 2 } \right)} \right)x - 3\left( {1 - 2} \right) = 0 \\
\Rightarrow {x^3} - 5{x^2} + \left( {3 + 3\sqrt 2 - 1 + 3 - 3\sqrt 2 } \right)x - 3\left( { - 1} \right) = 0 \\
\Rightarrow {x^3} - 5{x^2} + 5x + 3 = 0 \\
$
Hence this the cubic equations whose roots are 3 , $1 + \sqrt 2 $ and $1 - \sqrt 2 $
Therefore the correct option is d.
Note:
Whenever three roots a , b , c are given then the cubic equation can also be found by
$ \Rightarrow \left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right) = 0$
Hence here a = 3 and b = $1 + \sqrt 2 $ and c =$1 - \sqrt 2 $
Hence our cubic equation is given by
$ \Rightarrow \left( {x - 3} \right)\left( {x - \left( {1 + \sqrt 2 } \right)} \right)\left( {x - \left( {1 - \sqrt 2 } \right)} \right) = 0$
Multiplying this we get the required equation
\[
\Rightarrow \left( {x - 3} \right)\left( {x - 1 - \sqrt 2 } \right)\left( {x - 1 + \sqrt 2 } \right) = 0 \\
\Rightarrow \left( {x - 3} \right)\left( {{{\left( {x - 1} \right)}^2} - 2} \right) = 0 \\
\Rightarrow \left( {x - 3} \right)\left( {{x^2} + 1 - 2x - 2} \right) = 0 \\
\Rightarrow \left( {x - 3} \right)\left( {{x^2} - 2x - 1} \right) = 0 \\
\Rightarrow {x^3} - 2{x^2} - x - 3{x^2} + 6x + 3 = 0 \\
\Rightarrow {x^3} - 5{x^2} + 5x + 3 = 0 \\
\]
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

