
If 3 and $1 + \sqrt 2 $ are two roots of a cubic equation with rational coefficients , then the equation is
A) ${x^3} - 5{x^2} + 9x - 9 = 0$
B) ${x^3} - 3{x^2} - 4x + 12 = 0$
C) ${x^3} - 5{x^2} + 7x - 3 = 0$
D) None of these
Answer
481.2k+ views
Hint:
we are given two roots and since $1 + \sqrt 2 $is irrational and we know that irrational roots occur in pairs we get the other root to be $1 - \sqrt 2 $and now taking these roots to be a , b and c respectively we get the required cubic equation by ${x^3} - \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x - abc = 0$
Complete step by step solution:
We are given that 3 and $1 + \sqrt 2 $ are two roots. Since it is a cubic equation we need to have 3 roots. We know that irrational roots occur in conjugate pairs. Here $1 + \sqrt 2 $is an irrational root and hence the other root is $1 - \sqrt 2 $. Now we have the 3 roots of the cubic equation. We know that if a , b , c are the roots of a cubic equation then the cubic equation is given by
$ \Rightarrow {x^3} - \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x - abc = 0$
Hence here a = 3 and b = $1 + \sqrt 2 $and c =$1 - \sqrt 2 $
Hence our cubic equation is given by
$
\Rightarrow {x^3} - \left( {3 + 1 + \sqrt 2 + 1 - \sqrt 2 } \right){x^2} + \left( {3\left( {1 + \sqrt 2 } \right) + \left( {1 + \sqrt 2 } \right)\left( {1 - \sqrt 2 } \right) + 3\left( {1 - \sqrt 2 } \right)} \right)x - 3\left( {1 + \sqrt 2 } \right)\left( {1 - \sqrt 2 } \right) = 0 \\
\Rightarrow {x^3} - \left( {3 + 1 + 1} \right){x^2} + \left( {\left( {3 + 3\sqrt 2 } \right) + \left( {1 - 2} \right) + \left( {3 - 3\sqrt 2 } \right)} \right)x - 3\left( {1 - 2} \right) = 0 \\
\Rightarrow {x^3} - 5{x^2} + \left( {3 + 3\sqrt 2 - 1 + 3 - 3\sqrt 2 } \right)x - 3\left( { - 1} \right) = 0 \\
\Rightarrow {x^3} - 5{x^2} + 5x + 3 = 0 \\
$
Hence this the cubic equations whose roots are 3 , $1 + \sqrt 2 $ and $1 - \sqrt 2 $
Therefore the correct option is d.
Note:
Whenever three roots a , b , c are given then the cubic equation can also be found by
$ \Rightarrow \left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right) = 0$
Hence here a = 3 and b = $1 + \sqrt 2 $ and c =$1 - \sqrt 2 $
Hence our cubic equation is given by
$ \Rightarrow \left( {x - 3} \right)\left( {x - \left( {1 + \sqrt 2 } \right)} \right)\left( {x - \left( {1 - \sqrt 2 } \right)} \right) = 0$
Multiplying this we get the required equation
\[
\Rightarrow \left( {x - 3} \right)\left( {x - 1 - \sqrt 2 } \right)\left( {x - 1 + \sqrt 2 } \right) = 0 \\
\Rightarrow \left( {x - 3} \right)\left( {{{\left( {x - 1} \right)}^2} - 2} \right) = 0 \\
\Rightarrow \left( {x - 3} \right)\left( {{x^2} + 1 - 2x - 2} \right) = 0 \\
\Rightarrow \left( {x - 3} \right)\left( {{x^2} - 2x - 1} \right) = 0 \\
\Rightarrow {x^3} - 2{x^2} - x - 3{x^2} + 6x + 3 = 0 \\
\Rightarrow {x^3} - 5{x^2} + 5x + 3 = 0 \\
\]
we are given two roots and since $1 + \sqrt 2 $is irrational and we know that irrational roots occur in pairs we get the other root to be $1 - \sqrt 2 $and now taking these roots to be a , b and c respectively we get the required cubic equation by ${x^3} - \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x - abc = 0$
Complete step by step solution:
We are given that 3 and $1 + \sqrt 2 $ are two roots. Since it is a cubic equation we need to have 3 roots. We know that irrational roots occur in conjugate pairs. Here $1 + \sqrt 2 $is an irrational root and hence the other root is $1 - \sqrt 2 $. Now we have the 3 roots of the cubic equation. We know that if a , b , c are the roots of a cubic equation then the cubic equation is given by
$ \Rightarrow {x^3} - \left( {a + b + c} \right){x^2} + \left( {ab + bc + ca} \right)x - abc = 0$
Hence here a = 3 and b = $1 + \sqrt 2 $and c =$1 - \sqrt 2 $
Hence our cubic equation is given by
$
\Rightarrow {x^3} - \left( {3 + 1 + \sqrt 2 + 1 - \sqrt 2 } \right){x^2} + \left( {3\left( {1 + \sqrt 2 } \right) + \left( {1 + \sqrt 2 } \right)\left( {1 - \sqrt 2 } \right) + 3\left( {1 - \sqrt 2 } \right)} \right)x - 3\left( {1 + \sqrt 2 } \right)\left( {1 - \sqrt 2 } \right) = 0 \\
\Rightarrow {x^3} - \left( {3 + 1 + 1} \right){x^2} + \left( {\left( {3 + 3\sqrt 2 } \right) + \left( {1 - 2} \right) + \left( {3 - 3\sqrt 2 } \right)} \right)x - 3\left( {1 - 2} \right) = 0 \\
\Rightarrow {x^3} - 5{x^2} + \left( {3 + 3\sqrt 2 - 1 + 3 - 3\sqrt 2 } \right)x - 3\left( { - 1} \right) = 0 \\
\Rightarrow {x^3} - 5{x^2} + 5x + 3 = 0 \\
$
Hence this the cubic equations whose roots are 3 , $1 + \sqrt 2 $ and $1 - \sqrt 2 $
Therefore the correct option is d.
Note:
Whenever three roots a , b , c are given then the cubic equation can also be found by
$ \Rightarrow \left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right) = 0$
Hence here a = 3 and b = $1 + \sqrt 2 $ and c =$1 - \sqrt 2 $
Hence our cubic equation is given by
$ \Rightarrow \left( {x - 3} \right)\left( {x - \left( {1 + \sqrt 2 } \right)} \right)\left( {x - \left( {1 - \sqrt 2 } \right)} \right) = 0$
Multiplying this we get the required equation
\[
\Rightarrow \left( {x - 3} \right)\left( {x - 1 - \sqrt 2 } \right)\left( {x - 1 + \sqrt 2 } \right) = 0 \\
\Rightarrow \left( {x - 3} \right)\left( {{{\left( {x - 1} \right)}^2} - 2} \right) = 0 \\
\Rightarrow \left( {x - 3} \right)\left( {{x^2} + 1 - 2x - 2} \right) = 0 \\
\Rightarrow \left( {x - 3} \right)\left( {{x^2} - 2x - 1} \right) = 0 \\
\Rightarrow {x^3} - 2{x^2} - x - 3{x^2} + 6x + 3 = 0 \\
\Rightarrow {x^3} - 5{x^2} + 5x + 3 = 0 \\
\]
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Discuss the main reasons for poverty in India
