
If $2x=-1+i\sqrt{3}$, then the value of \[{{\left( 1-{{x}^{2}}+x \right)}^{6}}-{{\left( 1+{{x}^{2}}-x \right)}^{6}}\] is
A. 32
B. $-64$
C. 64
D. 0
Answer
492k+ views
Hint: We first find the speciality about the given equation $2x=-1+i\sqrt{3}$. We take squares and multiply with $x-1$. We use the value of $x=\omega $ as the imaginary cube root of unity. We put the value in the expression and find the value using the identities of \[1+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1\].
Complete step-by-step answer:
We first simplify the equation $2x=-1+i\sqrt{3}$ by squaring both sides. We get $2x+1=i\sqrt{3}$
\[\begin{align}
& {{\left( 2x+1 \right)}^{2}}={{\left( i\sqrt{3} \right)}^{2}} \\
& \Rightarrow 4{{x}^{2}}+4x+1=3{{i}^{2}} \\
\end{align}\]
We know that for imaginary value $i$, we get ${{i}^{2}}=-1$
\[\begin{align}
& 4{{x}^{2}}+4x+1=-3 \\
& \Rightarrow 4{{x}^{2}}+4x+4=0 \\
& \Rightarrow {{x}^{2}}+x+1=0 \\
\end{align}\]
We now multiply $x-1$ to both sides of the equation and get
\[\begin{align}
& \left( x-1 \right)\left( {{x}^{2}}+x+1 \right)=0 \\
& \Rightarrow {{x}^{3}}-1=0 \\
\end{align}\]
Therefore, we get the cube root of unity as the value of $x$. We know it has three roots \[1,\omega ,{{\omega }^{2}}\].
As we have $x=\dfrac{-1+i\sqrt{3}}{2}$, we can take it as any of the imaginary roots. We take $x=\omega $.
With the value of $\omega $, we know the identities involved and they are \[1+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1\].
We put the value of $x=\omega $ in \[{{\left( 1-{{x}^{2}}+x \right)}^{6}}-{{\left( 1+{{x}^{2}}-x \right)}^{6}}\] and get
\[\begin{align}
& {{\left( 1-{{x}^{2}}+x \right)}^{6}}-{{\left( 1+{{x}^{2}}-x \right)}^{6}} \\
& ={{\left( 1-{{\omega }^{2}}+\omega \right)}^{6}}-{{\left( 1+{{\omega }^{2}}-\omega \right)}^{6}} \\
\end{align}\]
Using the identity \[1+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1\], we get
\[\
={\left( {1 - {\omega ^2} + \omega } \right)^6} - {\left( {1 + {\omega ^2} - \omega } \right)^6} \\
{\left( { - \omega - {\omega ^2} - {\omega ^2} + \omega } \right)^6} - {\left( { - \omega - {\omega ^2} + {\omega ^2} - \omega } \right)^6} \\
= {\left( { - {\omega ^2} - {\omega ^2}} \right)^6} - {\left( { - \omega - \omega } \right)^6} \\
= 64{\omega ^{12}} - 64{\omega ^6} \\
= 64{\left( {{\omega ^3}} \right)^4} - 64{\left( {{\omega ^3}} \right)^2} \\
= 64 - 64 \\
= 0 \;
\]
Therefore, the value of \[{{\left( 1-{{x}^{2}}+x \right)}^{6}}-{{\left( 1+{{x}^{2}}-x \right)}^{6}}\] is 0. The correct option is D.
So, the correct answer is “Option D”.
Note: We can also solve the problem assuming the value of \[x={{\omega }^{2}}\]. We can take the imaginary value of $x=\dfrac{-1+i\sqrt{3}}{2}$ as any of \[\omega ,{{\omega }^{2}}\] as the square value gives the other imaginary root of $x=\dfrac{-1-i\sqrt{3}}{2}$. Also, we need to remember that as we multiplied the term $x-1$, it gives us the real root.
Complete step-by-step answer:
We first simplify the equation $2x=-1+i\sqrt{3}$ by squaring both sides. We get $2x+1=i\sqrt{3}$
\[\begin{align}
& {{\left( 2x+1 \right)}^{2}}={{\left( i\sqrt{3} \right)}^{2}} \\
& \Rightarrow 4{{x}^{2}}+4x+1=3{{i}^{2}} \\
\end{align}\]
We know that for imaginary value $i$, we get ${{i}^{2}}=-1$
\[\begin{align}
& 4{{x}^{2}}+4x+1=-3 \\
& \Rightarrow 4{{x}^{2}}+4x+4=0 \\
& \Rightarrow {{x}^{2}}+x+1=0 \\
\end{align}\]
We now multiply $x-1$ to both sides of the equation and get
\[\begin{align}
& \left( x-1 \right)\left( {{x}^{2}}+x+1 \right)=0 \\
& \Rightarrow {{x}^{3}}-1=0 \\
\end{align}\]
Therefore, we get the cube root of unity as the value of $x$. We know it has three roots \[1,\omega ,{{\omega }^{2}}\].
As we have $x=\dfrac{-1+i\sqrt{3}}{2}$, we can take it as any of the imaginary roots. We take $x=\omega $.
With the value of $\omega $, we know the identities involved and they are \[1+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1\].
We put the value of $x=\omega $ in \[{{\left( 1-{{x}^{2}}+x \right)}^{6}}-{{\left( 1+{{x}^{2}}-x \right)}^{6}}\] and get
\[\begin{align}
& {{\left( 1-{{x}^{2}}+x \right)}^{6}}-{{\left( 1+{{x}^{2}}-x \right)}^{6}} \\
& ={{\left( 1-{{\omega }^{2}}+\omega \right)}^{6}}-{{\left( 1+{{\omega }^{2}}-\omega \right)}^{6}} \\
\end{align}\]
Using the identity \[1+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1\], we get
\[\
={\left( {1 - {\omega ^2} + \omega } \right)^6} - {\left( {1 + {\omega ^2} - \omega } \right)^6} \\
{\left( { - \omega - {\omega ^2} - {\omega ^2} + \omega } \right)^6} - {\left( { - \omega - {\omega ^2} + {\omega ^2} - \omega } \right)^6} \\
= {\left( { - {\omega ^2} - {\omega ^2}} \right)^6} - {\left( { - \omega - \omega } \right)^6} \\
= 64{\omega ^{12}} - 64{\omega ^6} \\
= 64{\left( {{\omega ^3}} \right)^4} - 64{\left( {{\omega ^3}} \right)^2} \\
= 64 - 64 \\
= 0 \;
\]
Therefore, the value of \[{{\left( 1-{{x}^{2}}+x \right)}^{6}}-{{\left( 1+{{x}^{2}}-x \right)}^{6}}\] is 0. The correct option is D.
So, the correct answer is “Option D”.
Note: We can also solve the problem assuming the value of \[x={{\omega }^{2}}\]. We can take the imaginary value of $x=\dfrac{-1+i\sqrt{3}}{2}$ as any of \[\omega ,{{\omega }^{2}}\] as the square value gives the other imaginary root of $x=\dfrac{-1-i\sqrt{3}}{2}$. Also, we need to remember that as we multiplied the term $x-1$, it gives us the real root.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

