
If ${2^x} = {3^y} = {6^{ - z}}$, then what is the value of $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$?
$
{\text{A}}{\text{. 0}} \\
{\text{B}}{\text{. 1}} \\
{\text{C}}{\text{. }}\dfrac{3}{2} \\
{\text{D}}{\text{. }} - \dfrac{1}{2} \\
$
Answer
599.4k+ views
Hint: Here, we will proceed by assuming the given equation equal to k. Then, we will represent each side of this equation in terms of k and we will use the general formulas of natural logarithmic function which are $\ln \left( {{a^b}} \right) = b\ln \left( a \right)$ and $\ln \left( a \right) + \ln \left( b \right) = \ln \left( {a \times b} \right)$.
Complete step-by-step answer:
Given, ${2^x} = {3^y} = {6^{ - z}}$
Let us suppose that each term in the above given equation is equal to k i.e., ${2^x} = {3^y} = {6^{ - z}} = k{\text{ }} \to (1{\text{)}}$
By taking ln on all the sides of equation (1), we have
$\ln \left( {{2^x}} \right) = \ln \left( {{3^y}} \right) = \ln \left( {{6^{ - z}}} \right) = \ln \left( k \right)$
Using the formula $\ln \left( {{a^b}} \right) = b\ln \left( a \right)$ in the above equation, we get
$x\ln \left( 2 \right) = y\ln \left( 3 \right) = \left( { - z} \right)\ln \left( 6 \right) = \ln \left( k \right){\text{ }} \to {\text{(2)}}$
From equation (2), we can write
\[
\Rightarrow x\ln \left( 2 \right) = \ln \left( k \right) \\
\Rightarrow x = \dfrac{{\ln \left( k \right)}}{{\ln \left( 2 \right)}}{\text{ }} \to {\text{(3)}}
\\
\]
From equation (2), we can write
\[
\Rightarrow y\ln \left( 3 \right) = \ln \left( k \right) \\
\Rightarrow y = \dfrac{{\ln \left( k \right)}}{{\ln \left( 3 \right)}}{\text{ }} \to {\text{(4)}}
\\
\]
From equation (2), we can write
\[
\Rightarrow \left( { - z} \right)\ln \left( 6 \right) = \ln \left( k \right) \\
\Rightarrow - z = \dfrac{{\ln \left( k \right)}}{{\ln \left( 6 \right)}} \\
\Rightarrow \left( { - z} \right)\ln \left( 6 \right) = \ln \left( k \right) \\
\Rightarrow z = - \dfrac{{\ln \left( k \right)}}{{\ln \left( 6 \right)}}{\text{ }} \to {\text{(5)}}
\\
\]
By substituting the values of x, y and z from equations (3), (4) and (5) respectively in the expression $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$, we get
$
\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{1}{{\left[ {\dfrac{{\ln \left( k \right)}}{{\ln \left( 2 \right)}}} \right]}} + \dfrac{1}{{\left[ {\dfrac{{\ln \left( k \right)}}{{\ln \left( 3 \right)}}} \right]}} + \dfrac{1}{{\left[ { - \dfrac{{\ln \left( k \right)}}{{\ln \left( 6 \right)}}} \right]}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\ln \left( 2 \right)}}{{\ln \left( k \right)}} + \dfrac{{\ln \left( 3 \right)}}{{\ln \left( k \right)}} - \dfrac{{\ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
$
By taking ln(k) as the LCM of all the terms on the RHS of the above equation, we get
$
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\ln \left( 2 \right) + \ln \left( 3 \right) - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\left[ {\ln \left( 2 \right) + \ln \left( 3 \right)} \right] - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
$
Using the formula $\ln \left( a \right) + \ln \left( b \right) = \ln \left( {a \times b} \right)$ in the above equation, we get
$
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\left[ {\ln \left( {2 \times 3} \right)} \right] - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\ln \left( 6 \right) - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{0}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = 0 \\
$
Therefore, the value of the expression $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ is 0.
Hence, option A is correct.
Note: In this particular problem, we have found the values of x, y and z in terms of k (which is assumed) and then these values are substituted in the expression $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ and then we will simplify this expression in terms of k by taking the lowest common method (LCM) which comes out to be equal to 0.
Complete step-by-step answer:
Given, ${2^x} = {3^y} = {6^{ - z}}$
Let us suppose that each term in the above given equation is equal to k i.e., ${2^x} = {3^y} = {6^{ - z}} = k{\text{ }} \to (1{\text{)}}$
By taking ln on all the sides of equation (1), we have
$\ln \left( {{2^x}} \right) = \ln \left( {{3^y}} \right) = \ln \left( {{6^{ - z}}} \right) = \ln \left( k \right)$
Using the formula $\ln \left( {{a^b}} \right) = b\ln \left( a \right)$ in the above equation, we get
$x\ln \left( 2 \right) = y\ln \left( 3 \right) = \left( { - z} \right)\ln \left( 6 \right) = \ln \left( k \right){\text{ }} \to {\text{(2)}}$
From equation (2), we can write
\[
\Rightarrow x\ln \left( 2 \right) = \ln \left( k \right) \\
\Rightarrow x = \dfrac{{\ln \left( k \right)}}{{\ln \left( 2 \right)}}{\text{ }} \to {\text{(3)}}
\\
\]
From equation (2), we can write
\[
\Rightarrow y\ln \left( 3 \right) = \ln \left( k \right) \\
\Rightarrow y = \dfrac{{\ln \left( k \right)}}{{\ln \left( 3 \right)}}{\text{ }} \to {\text{(4)}}
\\
\]
From equation (2), we can write
\[
\Rightarrow \left( { - z} \right)\ln \left( 6 \right) = \ln \left( k \right) \\
\Rightarrow - z = \dfrac{{\ln \left( k \right)}}{{\ln \left( 6 \right)}} \\
\Rightarrow \left( { - z} \right)\ln \left( 6 \right) = \ln \left( k \right) \\
\Rightarrow z = - \dfrac{{\ln \left( k \right)}}{{\ln \left( 6 \right)}}{\text{ }} \to {\text{(5)}}
\\
\]
By substituting the values of x, y and z from equations (3), (4) and (5) respectively in the expression $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$, we get
$
\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{1}{{\left[ {\dfrac{{\ln \left( k \right)}}{{\ln \left( 2 \right)}}} \right]}} + \dfrac{1}{{\left[ {\dfrac{{\ln \left( k \right)}}{{\ln \left( 3 \right)}}} \right]}} + \dfrac{1}{{\left[ { - \dfrac{{\ln \left( k \right)}}{{\ln \left( 6 \right)}}} \right]}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\ln \left( 2 \right)}}{{\ln \left( k \right)}} + \dfrac{{\ln \left( 3 \right)}}{{\ln \left( k \right)}} - \dfrac{{\ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
$
By taking ln(k) as the LCM of all the terms on the RHS of the above equation, we get
$
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\ln \left( 2 \right) + \ln \left( 3 \right) - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\left[ {\ln \left( 2 \right) + \ln \left( 3 \right)} \right] - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
$
Using the formula $\ln \left( a \right) + \ln \left( b \right) = \ln \left( {a \times b} \right)$ in the above equation, we get
$
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\left[ {\ln \left( {2 \times 3} \right)} \right] - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\ln \left( 6 \right) - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{0}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = 0 \\
$
Therefore, the value of the expression $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ is 0.
Hence, option A is correct.
Note: In this particular problem, we have found the values of x, y and z in terms of k (which is assumed) and then these values are substituted in the expression $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ and then we will simplify this expression in terms of k by taking the lowest common method (LCM) which comes out to be equal to 0.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

