
If ${2^x} = {3^y} = {6^{ - z}}$, then what is the value of $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$?
$
{\text{A}}{\text{. 0}} \\
{\text{B}}{\text{. 1}} \\
{\text{C}}{\text{. }}\dfrac{3}{2} \\
{\text{D}}{\text{. }} - \dfrac{1}{2} \\
$
Answer
613.8k+ views
Hint: Here, we will proceed by assuming the given equation equal to k. Then, we will represent each side of this equation in terms of k and we will use the general formulas of natural logarithmic function which are $\ln \left( {{a^b}} \right) = b\ln \left( a \right)$ and $\ln \left( a \right) + \ln \left( b \right) = \ln \left( {a \times b} \right)$.
Complete step-by-step answer:
Given, ${2^x} = {3^y} = {6^{ - z}}$
Let us suppose that each term in the above given equation is equal to k i.e., ${2^x} = {3^y} = {6^{ - z}} = k{\text{ }} \to (1{\text{)}}$
By taking ln on all the sides of equation (1), we have
$\ln \left( {{2^x}} \right) = \ln \left( {{3^y}} \right) = \ln \left( {{6^{ - z}}} \right) = \ln \left( k \right)$
Using the formula $\ln \left( {{a^b}} \right) = b\ln \left( a \right)$ in the above equation, we get
$x\ln \left( 2 \right) = y\ln \left( 3 \right) = \left( { - z} \right)\ln \left( 6 \right) = \ln \left( k \right){\text{ }} \to {\text{(2)}}$
From equation (2), we can write
\[
\Rightarrow x\ln \left( 2 \right) = \ln \left( k \right) \\
\Rightarrow x = \dfrac{{\ln \left( k \right)}}{{\ln \left( 2 \right)}}{\text{ }} \to {\text{(3)}}
\\
\]
From equation (2), we can write
\[
\Rightarrow y\ln \left( 3 \right) = \ln \left( k \right) \\
\Rightarrow y = \dfrac{{\ln \left( k \right)}}{{\ln \left( 3 \right)}}{\text{ }} \to {\text{(4)}}
\\
\]
From equation (2), we can write
\[
\Rightarrow \left( { - z} \right)\ln \left( 6 \right) = \ln \left( k \right) \\
\Rightarrow - z = \dfrac{{\ln \left( k \right)}}{{\ln \left( 6 \right)}} \\
\Rightarrow \left( { - z} \right)\ln \left( 6 \right) = \ln \left( k \right) \\
\Rightarrow z = - \dfrac{{\ln \left( k \right)}}{{\ln \left( 6 \right)}}{\text{ }} \to {\text{(5)}}
\\
\]
By substituting the values of x, y and z from equations (3), (4) and (5) respectively in the expression $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$, we get
$
\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{1}{{\left[ {\dfrac{{\ln \left( k \right)}}{{\ln \left( 2 \right)}}} \right]}} + \dfrac{1}{{\left[ {\dfrac{{\ln \left( k \right)}}{{\ln \left( 3 \right)}}} \right]}} + \dfrac{1}{{\left[ { - \dfrac{{\ln \left( k \right)}}{{\ln \left( 6 \right)}}} \right]}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\ln \left( 2 \right)}}{{\ln \left( k \right)}} + \dfrac{{\ln \left( 3 \right)}}{{\ln \left( k \right)}} - \dfrac{{\ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
$
By taking ln(k) as the LCM of all the terms on the RHS of the above equation, we get
$
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\ln \left( 2 \right) + \ln \left( 3 \right) - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\left[ {\ln \left( 2 \right) + \ln \left( 3 \right)} \right] - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
$
Using the formula $\ln \left( a \right) + \ln \left( b \right) = \ln \left( {a \times b} \right)$ in the above equation, we get
$
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\left[ {\ln \left( {2 \times 3} \right)} \right] - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\ln \left( 6 \right) - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{0}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = 0 \\
$
Therefore, the value of the expression $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ is 0.
Hence, option A is correct.
Note: In this particular problem, we have found the values of x, y and z in terms of k (which is assumed) and then these values are substituted in the expression $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ and then we will simplify this expression in terms of k by taking the lowest common method (LCM) which comes out to be equal to 0.
Complete step-by-step answer:
Given, ${2^x} = {3^y} = {6^{ - z}}$
Let us suppose that each term in the above given equation is equal to k i.e., ${2^x} = {3^y} = {6^{ - z}} = k{\text{ }} \to (1{\text{)}}$
By taking ln on all the sides of equation (1), we have
$\ln \left( {{2^x}} \right) = \ln \left( {{3^y}} \right) = \ln \left( {{6^{ - z}}} \right) = \ln \left( k \right)$
Using the formula $\ln \left( {{a^b}} \right) = b\ln \left( a \right)$ in the above equation, we get
$x\ln \left( 2 \right) = y\ln \left( 3 \right) = \left( { - z} \right)\ln \left( 6 \right) = \ln \left( k \right){\text{ }} \to {\text{(2)}}$
From equation (2), we can write
\[
\Rightarrow x\ln \left( 2 \right) = \ln \left( k \right) \\
\Rightarrow x = \dfrac{{\ln \left( k \right)}}{{\ln \left( 2 \right)}}{\text{ }} \to {\text{(3)}}
\\
\]
From equation (2), we can write
\[
\Rightarrow y\ln \left( 3 \right) = \ln \left( k \right) \\
\Rightarrow y = \dfrac{{\ln \left( k \right)}}{{\ln \left( 3 \right)}}{\text{ }} \to {\text{(4)}}
\\
\]
From equation (2), we can write
\[
\Rightarrow \left( { - z} \right)\ln \left( 6 \right) = \ln \left( k \right) \\
\Rightarrow - z = \dfrac{{\ln \left( k \right)}}{{\ln \left( 6 \right)}} \\
\Rightarrow \left( { - z} \right)\ln \left( 6 \right) = \ln \left( k \right) \\
\Rightarrow z = - \dfrac{{\ln \left( k \right)}}{{\ln \left( 6 \right)}}{\text{ }} \to {\text{(5)}}
\\
\]
By substituting the values of x, y and z from equations (3), (4) and (5) respectively in the expression $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$, we get
$
\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{1}{{\left[ {\dfrac{{\ln \left( k \right)}}{{\ln \left( 2 \right)}}} \right]}} + \dfrac{1}{{\left[ {\dfrac{{\ln \left( k \right)}}{{\ln \left( 3 \right)}}} \right]}} + \dfrac{1}{{\left[ { - \dfrac{{\ln \left( k \right)}}{{\ln \left( 6 \right)}}} \right]}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\ln \left( 2 \right)}}{{\ln \left( k \right)}} + \dfrac{{\ln \left( 3 \right)}}{{\ln \left( k \right)}} - \dfrac{{\ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
$
By taking ln(k) as the LCM of all the terms on the RHS of the above equation, we get
$
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\ln \left( 2 \right) + \ln \left( 3 \right) - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\left[ {\ln \left( 2 \right) + \ln \left( 3 \right)} \right] - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
$
Using the formula $\ln \left( a \right) + \ln \left( b \right) = \ln \left( {a \times b} \right)$ in the above equation, we get
$
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\left[ {\ln \left( {2 \times 3} \right)} \right] - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\ln \left( 6 \right) - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{0}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = 0 \\
$
Therefore, the value of the expression $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ is 0.
Hence, option A is correct.
Note: In this particular problem, we have found the values of x, y and z in terms of k (which is assumed) and then these values are substituted in the expression $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ and then we will simplify this expression in terms of k by taking the lowest common method (LCM) which comes out to be equal to 0.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

