
If ${2^x} = {3^y} = {6^{ - z}}$, then what is the value of $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$?
$
{\text{A}}{\text{. 0}} \\
{\text{B}}{\text{. 1}} \\
{\text{C}}{\text{. }}\dfrac{3}{2} \\
{\text{D}}{\text{. }} - \dfrac{1}{2} \\
$
Answer
515.1k+ views
Hint: Here, we will proceed by assuming the given equation equal to k. Then, we will represent each side of this equation in terms of k and we will use the general formulas of natural logarithmic function which are $\ln \left( {{a^b}} \right) = b\ln \left( a \right)$ and $\ln \left( a \right) + \ln \left( b \right) = \ln \left( {a \times b} \right)$.
Complete step-by-step answer:
Given, ${2^x} = {3^y} = {6^{ - z}}$
Let us suppose that each term in the above given equation is equal to k i.e., ${2^x} = {3^y} = {6^{ - z}} = k{\text{ }} \to (1{\text{)}}$
By taking ln on all the sides of equation (1), we have
$\ln \left( {{2^x}} \right) = \ln \left( {{3^y}} \right) = \ln \left( {{6^{ - z}}} \right) = \ln \left( k \right)$
Using the formula $\ln \left( {{a^b}} \right) = b\ln \left( a \right)$ in the above equation, we get
$x\ln \left( 2 \right) = y\ln \left( 3 \right) = \left( { - z} \right)\ln \left( 6 \right) = \ln \left( k \right){\text{ }} \to {\text{(2)}}$
From equation (2), we can write
\[
\Rightarrow x\ln \left( 2 \right) = \ln \left( k \right) \\
\Rightarrow x = \dfrac{{\ln \left( k \right)}}{{\ln \left( 2 \right)}}{\text{ }} \to {\text{(3)}}
\\
\]
From equation (2), we can write
\[
\Rightarrow y\ln \left( 3 \right) = \ln \left( k \right) \\
\Rightarrow y = \dfrac{{\ln \left( k \right)}}{{\ln \left( 3 \right)}}{\text{ }} \to {\text{(4)}}
\\
\]
From equation (2), we can write
\[
\Rightarrow \left( { - z} \right)\ln \left( 6 \right) = \ln \left( k \right) \\
\Rightarrow - z = \dfrac{{\ln \left( k \right)}}{{\ln \left( 6 \right)}} \\
\Rightarrow \left( { - z} \right)\ln \left( 6 \right) = \ln \left( k \right) \\
\Rightarrow z = - \dfrac{{\ln \left( k \right)}}{{\ln \left( 6 \right)}}{\text{ }} \to {\text{(5)}}
\\
\]
By substituting the values of x, y and z from equations (3), (4) and (5) respectively in the expression $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$, we get
$
\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{1}{{\left[ {\dfrac{{\ln \left( k \right)}}{{\ln \left( 2 \right)}}} \right]}} + \dfrac{1}{{\left[ {\dfrac{{\ln \left( k \right)}}{{\ln \left( 3 \right)}}} \right]}} + \dfrac{1}{{\left[ { - \dfrac{{\ln \left( k \right)}}{{\ln \left( 6 \right)}}} \right]}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\ln \left( 2 \right)}}{{\ln \left( k \right)}} + \dfrac{{\ln \left( 3 \right)}}{{\ln \left( k \right)}} - \dfrac{{\ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
$
By taking ln(k) as the LCM of all the terms on the RHS of the above equation, we get
$
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\ln \left( 2 \right) + \ln \left( 3 \right) - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\left[ {\ln \left( 2 \right) + \ln \left( 3 \right)} \right] - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
$
Using the formula $\ln \left( a \right) + \ln \left( b \right) = \ln \left( {a \times b} \right)$ in the above equation, we get
$
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\left[ {\ln \left( {2 \times 3} \right)} \right] - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\ln \left( 6 \right) - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{0}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = 0 \\
$
Therefore, the value of the expression $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ is 0.
Hence, option A is correct.
Note: In this particular problem, we have found the values of x, y and z in terms of k (which is assumed) and then these values are substituted in the expression $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ and then we will simplify this expression in terms of k by taking the lowest common method (LCM) which comes out to be equal to 0.
Complete step-by-step answer:
Given, ${2^x} = {3^y} = {6^{ - z}}$
Let us suppose that each term in the above given equation is equal to k i.e., ${2^x} = {3^y} = {6^{ - z}} = k{\text{ }} \to (1{\text{)}}$
By taking ln on all the sides of equation (1), we have
$\ln \left( {{2^x}} \right) = \ln \left( {{3^y}} \right) = \ln \left( {{6^{ - z}}} \right) = \ln \left( k \right)$
Using the formula $\ln \left( {{a^b}} \right) = b\ln \left( a \right)$ in the above equation, we get
$x\ln \left( 2 \right) = y\ln \left( 3 \right) = \left( { - z} \right)\ln \left( 6 \right) = \ln \left( k \right){\text{ }} \to {\text{(2)}}$
From equation (2), we can write
\[
\Rightarrow x\ln \left( 2 \right) = \ln \left( k \right) \\
\Rightarrow x = \dfrac{{\ln \left( k \right)}}{{\ln \left( 2 \right)}}{\text{ }} \to {\text{(3)}}
\\
\]
From equation (2), we can write
\[
\Rightarrow y\ln \left( 3 \right) = \ln \left( k \right) \\
\Rightarrow y = \dfrac{{\ln \left( k \right)}}{{\ln \left( 3 \right)}}{\text{ }} \to {\text{(4)}}
\\
\]
From equation (2), we can write
\[
\Rightarrow \left( { - z} \right)\ln \left( 6 \right) = \ln \left( k \right) \\
\Rightarrow - z = \dfrac{{\ln \left( k \right)}}{{\ln \left( 6 \right)}} \\
\Rightarrow \left( { - z} \right)\ln \left( 6 \right) = \ln \left( k \right) \\
\Rightarrow z = - \dfrac{{\ln \left( k \right)}}{{\ln \left( 6 \right)}}{\text{ }} \to {\text{(5)}}
\\
\]
By substituting the values of x, y and z from equations (3), (4) and (5) respectively in the expression $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$, we get
$
\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{1}{{\left[ {\dfrac{{\ln \left( k \right)}}{{\ln \left( 2 \right)}}} \right]}} + \dfrac{1}{{\left[ {\dfrac{{\ln \left( k \right)}}{{\ln \left( 3 \right)}}} \right]}} + \dfrac{1}{{\left[ { - \dfrac{{\ln \left( k \right)}}{{\ln \left( 6 \right)}}} \right]}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\ln \left( 2 \right)}}{{\ln \left( k \right)}} + \dfrac{{\ln \left( 3 \right)}}{{\ln \left( k \right)}} - \dfrac{{\ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
$
By taking ln(k) as the LCM of all the terms on the RHS of the above equation, we get
$
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\ln \left( 2 \right) + \ln \left( 3 \right) - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\left[ {\ln \left( 2 \right) + \ln \left( 3 \right)} \right] - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
$
Using the formula $\ln \left( a \right) + \ln \left( b \right) = \ln \left( {a \times b} \right)$ in the above equation, we get
$
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\left[ {\ln \left( {2 \times 3} \right)} \right] - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{{\ln \left( 6 \right) - \ln \left( 6 \right)}}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = \dfrac{0}{{\ln \left( k \right)}} \\
\Rightarrow \left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right) = 0 \\
$
Therefore, the value of the expression $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ is 0.
Hence, option A is correct.
Note: In this particular problem, we have found the values of x, y and z in terms of k (which is assumed) and then these values are substituted in the expression $\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ and then we will simplify this expression in terms of k by taking the lowest common method (LCM) which comes out to be equal to 0.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE
