
: If \[2x = 3 + 5i\], then the value of \[2{x^3} + 2{x^2} - 7x + 72\] is
1 \[4\]
2 \[ - 4\]
3 \[8\]
4 \[ - 8\]
Answer
510k+ views
Hint: To find the value of \[2{x^3} + 2{x^2} - 7x + 72\], we need to find the value of \[x\] from the given expression \[2x = 3 + 5i\], then from the obtained value of \[x\]; find \[{x^2}\] and \[{x^3}\] respectively. Then substitute the obtained value of \[x\], \[{x^2}\] and \[{x^3}\] in the given expression \[2{x^3} + 2{x^2} - 7x + 72\].
Complete step by step answer:
Let us write the given data:
\[2x = 3 + 5i\]
In which the equation can be written in terms of \[x\]as:
\[x = \dfrac{{3 + 5i}}{2}\]
Then with respect to \[x\], \[{x^3}\] becomes
\[{x^3} = {\left( {\dfrac{{3 + 5i}}{2}} \right)^3}\]
Expanding the cube root terms, we get:
\[ \Rightarrow {x^3} = \left( {\dfrac{{27 + 135i - 225 - 125i}}{8}} \right)\]
\[ \Rightarrow {x^3} = \dfrac{{\left( { - 198 + 10i} \right)}}{8}\]
And now to obtain the value of \[{x^2}\], we have:
\[ \Rightarrow {x^2} = \dfrac{{\left( {9 - 25 + 30i} \right)}}{4}\]
\[ \Rightarrow {x^2} = \dfrac{{\left( { - 16 + 30i} \right)}}{4}\]
Hence, to find the value of \[2{x^3} + 2{x^2} - 7x + 72\], we need to substitute all the obtained values of \[x\], \[{x^2}\]and\[{x^3}\]i.e.,
\[2{x^3} + 2{x^2} - 7x + 72 = 2\dfrac{{\left( { - 198 + 10i} \right)}}{8} + 2\dfrac{{\left( { - 16 + 30i} \right)}}{4} - 7\dfrac{{\left( {3 + 5i} \right)}}{2} + 72\]
Evaluate each term, as:
\[ = \left( {\dfrac{{ - 99}}{2} - 8 - \dfrac{{21}}{2} + 72} \right) + \left[ {\left( {\dfrac{{10}}{4} + 15} \right)\dfrac{{ - 35}}{2}} \right]i\]
Simplifying the terms, we have:
\[ = \left( {\dfrac{{ - 99 - 16 - 21 + 144}}{2}} \right) + \left( {\dfrac{{10 + 60 - 70}}{4}} \right)i\]
Evaluating the numerator terms, we get:
\[ = \left( {\dfrac{8}{2}} \right) + \left( {\dfrac{0}{4}} \right)i\]
\[ = \dfrac{8}{2}\]
Hence, we get:
\[ = 4\]
\[\therefore 2{x^3} + 2{x^2} - 7x + 72 = 4\]
So, the correct answer is “Option 1”.
Note: The key point to note is that, the given expression is not quadratic hence, while finding the value of \[x\] from the given expression we must also find the value of \[x\], such that find \[{x^2}\] and \[{x^3}\] we need to substitute in the given asked expression.
Complete step by step answer:
Let us write the given data:
\[2x = 3 + 5i\]
In which the equation can be written in terms of \[x\]as:
\[x = \dfrac{{3 + 5i}}{2}\]
Then with respect to \[x\], \[{x^3}\] becomes
\[{x^3} = {\left( {\dfrac{{3 + 5i}}{2}} \right)^3}\]
Expanding the cube root terms, we get:
\[ \Rightarrow {x^3} = \left( {\dfrac{{27 + 135i - 225 - 125i}}{8}} \right)\]
\[ \Rightarrow {x^3} = \dfrac{{\left( { - 198 + 10i} \right)}}{8}\]
And now to obtain the value of \[{x^2}\], we have:
\[ \Rightarrow {x^2} = \dfrac{{\left( {9 - 25 + 30i} \right)}}{4}\]
\[ \Rightarrow {x^2} = \dfrac{{\left( { - 16 + 30i} \right)}}{4}\]
Hence, to find the value of \[2{x^3} + 2{x^2} - 7x + 72\], we need to substitute all the obtained values of \[x\], \[{x^2}\]and\[{x^3}\]i.e.,
\[2{x^3} + 2{x^2} - 7x + 72 = 2\dfrac{{\left( { - 198 + 10i} \right)}}{8} + 2\dfrac{{\left( { - 16 + 30i} \right)}}{4} - 7\dfrac{{\left( {3 + 5i} \right)}}{2} + 72\]
Evaluate each term, as:
\[ = \left( {\dfrac{{ - 99}}{2} - 8 - \dfrac{{21}}{2} + 72} \right) + \left[ {\left( {\dfrac{{10}}{4} + 15} \right)\dfrac{{ - 35}}{2}} \right]i\]
Simplifying the terms, we have:
\[ = \left( {\dfrac{{ - 99 - 16 - 21 + 144}}{2}} \right) + \left( {\dfrac{{10 + 60 - 70}}{4}} \right)i\]
Evaluating the numerator terms, we get:
\[ = \left( {\dfrac{8}{2}} \right) + \left( {\dfrac{0}{4}} \right)i\]
\[ = \dfrac{8}{2}\]
Hence, we get:
\[ = 4\]
\[\therefore 2{x^3} + 2{x^2} - 7x + 72 = 4\]
So, the correct answer is “Option 1”.
Note: The key point to note is that, the given expression is not quadratic hence, while finding the value of \[x\] from the given expression we must also find the value of \[x\], such that find \[{x^2}\] and \[{x^3}\] we need to substitute in the given asked expression.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

