
If \[2\sin \left( {x + \dfrac{\pi }{3}} \right) = \cos \left( {x - \dfrac{\pi }{6}} \right)\], then \[\tan x = \]
A.\[ - \sqrt 3 \]
B.\[\sqrt 3 \]
C.\[ - 1/\sqrt 3 \]
D.\[1/\sqrt 3 \]
Answer
545.1k+ views
Hint: Here, we will expand the trigonometric functions using the basic identities of the trigonometric functions. We will simplify both sides of the equation and convert it in the form of \[\tan x.\]. On further simplification, we will get the required value of \[\tan x\].The tangent of an angle is equal to the ratio of sine of that angle to the cosine of the same angle.
Formula Used: We will use the following formulas/identities:
\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
Complete step-by-step answer:
We will expand sine function and cosine function using the trigonometric identities, \[\sin \left( {A + B} \right)\] and \[\cos \left( {A - B} \right)\]. Therefore, we get
\[ \Rightarrow 2\left( {\sin x\cos \dfrac{\pi }{3} + \cos x\sin \dfrac{\pi }{3}} \right) = \cos x\cos \dfrac{\pi }{6} + \sin x\sin \dfrac{\pi }{6}\]
We know that the value of \[\sin \dfrac{\pi }{6} = \dfrac{1}{2}\], \[\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\], \[\cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}\] and \[\cos \dfrac{\pi }{3} = \dfrac{1}{2}\]. Therefore, we get
\[ \Rightarrow 2\left( {\sin x \times \dfrac{1}{2} + \cos x \times \dfrac{{\sqrt 3 }}{2}} \right) = \cos x \times \dfrac{{\sqrt 3 }}{2} + \sin x \times \dfrac{1}{2}\]
As all the terms have \[\dfrac{1}{2}\] common.
So, canceling out \[\dfrac{1}{2}\], we get
\[ \Rightarrow 2\left( {\sin x + \cos x \times \sqrt 3 } \right) = \cos x \times \sqrt 3 + \sin x\]
\[ \Rightarrow 2\sin x + 2\cos x \times \sqrt 3 = \cos x \times \sqrt 3 + \sin x\]
Adding and subtracting the like terms, we get
\[ \Rightarrow 2\sin x - \sin x = \cos x \times \sqrt 3 - 2\cos x \times \sqrt 3 \]
\[ \Rightarrow \sin x = - \cos x \times \sqrt 3 \]
Dividing both sides by \[\cos x\], we get
\[ \Rightarrow \dfrac{{\sin x}}{{\cos x}} = - \sqrt 3 \]
We know that the tangent function is the ratio of the sine function to the cosine function.
Therefore, we get
\[ \Rightarrow \tan x = - \sqrt 3 \]
Hence, \[\tan x\] is equal to \[ - \sqrt 3 \].
So, option A is the correct option.
Note: We should know the different properties of the trigonometric function and with the help of this concept this question can be easily solved. Trigonometry is the study of the relationship between the angles and sides of a right triangle. Right Triangle is a triangle where one of its interior angles is a right angle (90 degrees). The relation between the sides and angles of a right triangle is the basis for trigonometry. The side opposite the right angle is called the hypotenuse. The sides adjacent to the right angle are called base.
\[\begin{array}{l}\sin {\rm{ }}A{\rm{ }} = {\rm{ }}\dfrac{{side\,{\rm{ }}\,opposite\,{\rm{ }}to\,{\rm{ }}angle\,{\rm{ }}A}}{{hypotenuse}}\\\cos {\rm{ }}A{\rm{ }} = \dfrac{{side\,{\rm{ }}adjacent\,{\rm{ }}to\,{\rm{ }}angle\,{\rm{ }}A}}{{hypotenuse}}\\\tan {\rm{ }}A{\rm{ }} = {\rm{ }}\dfrac{{side\,{\rm{ }}opposite\,{\rm{ }}to\,{\rm{ }}angle\,{\rm{ }}A}}{{side\,{\rm{ }}adjacent\,{\rm{ }}to\,{\rm{ }}angle\,{\rm{ }}A}} = \dfrac{{\sin A}}{{\cos A}}\end{array}\]
\[\cot {\rm{ }}A = \dfrac{1}{{\tan {\rm{ }}A}},\sec {\rm{ }}A = \dfrac{1}{{\cos {\rm{ }}A}},\cos ec{\rm{ }}A = \dfrac{1}{{\sin {\rm{ }}A}}\]
Formula Used: We will use the following formulas/identities:
\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
Complete step-by-step answer:
We will expand sine function and cosine function using the trigonometric identities, \[\sin \left( {A + B} \right)\] and \[\cos \left( {A - B} \right)\]. Therefore, we get
\[ \Rightarrow 2\left( {\sin x\cos \dfrac{\pi }{3} + \cos x\sin \dfrac{\pi }{3}} \right) = \cos x\cos \dfrac{\pi }{6} + \sin x\sin \dfrac{\pi }{6}\]
We know that the value of \[\sin \dfrac{\pi }{6} = \dfrac{1}{2}\], \[\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\], \[\cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}\] and \[\cos \dfrac{\pi }{3} = \dfrac{1}{2}\]. Therefore, we get
\[ \Rightarrow 2\left( {\sin x \times \dfrac{1}{2} + \cos x \times \dfrac{{\sqrt 3 }}{2}} \right) = \cos x \times \dfrac{{\sqrt 3 }}{2} + \sin x \times \dfrac{1}{2}\]
As all the terms have \[\dfrac{1}{2}\] common.
So, canceling out \[\dfrac{1}{2}\], we get
\[ \Rightarrow 2\left( {\sin x + \cos x \times \sqrt 3 } \right) = \cos x \times \sqrt 3 + \sin x\]
\[ \Rightarrow 2\sin x + 2\cos x \times \sqrt 3 = \cos x \times \sqrt 3 + \sin x\]
Adding and subtracting the like terms, we get
\[ \Rightarrow 2\sin x - \sin x = \cos x \times \sqrt 3 - 2\cos x \times \sqrt 3 \]
\[ \Rightarrow \sin x = - \cos x \times \sqrt 3 \]
Dividing both sides by \[\cos x\], we get
\[ \Rightarrow \dfrac{{\sin x}}{{\cos x}} = - \sqrt 3 \]
We know that the tangent function is the ratio of the sine function to the cosine function.
Therefore, we get
\[ \Rightarrow \tan x = - \sqrt 3 \]
Hence, \[\tan x\] is equal to \[ - \sqrt 3 \].
So, option A is the correct option.
Note: We should know the different properties of the trigonometric function and with the help of this concept this question can be easily solved. Trigonometry is the study of the relationship between the angles and sides of a right triangle. Right Triangle is a triangle where one of its interior angles is a right angle (90 degrees). The relation between the sides and angles of a right triangle is the basis for trigonometry. The side opposite the right angle is called the hypotenuse. The sides adjacent to the right angle are called base.
\[\begin{array}{l}\sin {\rm{ }}A{\rm{ }} = {\rm{ }}\dfrac{{side\,{\rm{ }}\,opposite\,{\rm{ }}to\,{\rm{ }}angle\,{\rm{ }}A}}{{hypotenuse}}\\\cos {\rm{ }}A{\rm{ }} = \dfrac{{side\,{\rm{ }}adjacent\,{\rm{ }}to\,{\rm{ }}angle\,{\rm{ }}A}}{{hypotenuse}}\\\tan {\rm{ }}A{\rm{ }} = {\rm{ }}\dfrac{{side\,{\rm{ }}opposite\,{\rm{ }}to\,{\rm{ }}angle\,{\rm{ }}A}}{{side\,{\rm{ }}adjacent\,{\rm{ }}to\,{\rm{ }}angle\,{\rm{ }}A}} = \dfrac{{\sin A}}{{\cos A}}\end{array}\]
\[\cot {\rm{ }}A = \dfrac{1}{{\tan {\rm{ }}A}},\sec {\rm{ }}A = \dfrac{1}{{\cos {\rm{ }}A}},\cos ec{\rm{ }}A = \dfrac{1}{{\sin {\rm{ }}A}}\]
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

