
If \[2\sin \left( {x + \dfrac{\pi }{3}} \right) = \cos \left( {x - \dfrac{\pi }{6}} \right)\], then \[\tan x = \]
A.\[ - \sqrt 3 \]
B.\[\sqrt 3 \]
C.\[ - 1/\sqrt 3 \]
D.\[1/\sqrt 3 \]
Answer
554.1k+ views
Hint: Here, we will expand the trigonometric functions using the basic identities of the trigonometric functions. We will simplify both sides of the equation and convert it in the form of \[\tan x.\]. On further simplification, we will get the required value of \[\tan x\].The tangent of an angle is equal to the ratio of sine of that angle to the cosine of the same angle.
Formula Used: We will use the following formulas/identities:
\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
Complete step-by-step answer:
We will expand sine function and cosine function using the trigonometric identities, \[\sin \left( {A + B} \right)\] and \[\cos \left( {A - B} \right)\]. Therefore, we get
\[ \Rightarrow 2\left( {\sin x\cos \dfrac{\pi }{3} + \cos x\sin \dfrac{\pi }{3}} \right) = \cos x\cos \dfrac{\pi }{6} + \sin x\sin \dfrac{\pi }{6}\]
We know that the value of \[\sin \dfrac{\pi }{6} = \dfrac{1}{2}\], \[\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\], \[\cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}\] and \[\cos \dfrac{\pi }{3} = \dfrac{1}{2}\]. Therefore, we get
\[ \Rightarrow 2\left( {\sin x \times \dfrac{1}{2} + \cos x \times \dfrac{{\sqrt 3 }}{2}} \right) = \cos x \times \dfrac{{\sqrt 3 }}{2} + \sin x \times \dfrac{1}{2}\]
As all the terms have \[\dfrac{1}{2}\] common.
So, canceling out \[\dfrac{1}{2}\], we get
\[ \Rightarrow 2\left( {\sin x + \cos x \times \sqrt 3 } \right) = \cos x \times \sqrt 3 + \sin x\]
\[ \Rightarrow 2\sin x + 2\cos x \times \sqrt 3 = \cos x \times \sqrt 3 + \sin x\]
Adding and subtracting the like terms, we get
\[ \Rightarrow 2\sin x - \sin x = \cos x \times \sqrt 3 - 2\cos x \times \sqrt 3 \]
\[ \Rightarrow \sin x = - \cos x \times \sqrt 3 \]
Dividing both sides by \[\cos x\], we get
\[ \Rightarrow \dfrac{{\sin x}}{{\cos x}} = - \sqrt 3 \]
We know that the tangent function is the ratio of the sine function to the cosine function.
Therefore, we get
\[ \Rightarrow \tan x = - \sqrt 3 \]
Hence, \[\tan x\] is equal to \[ - \sqrt 3 \].
So, option A is the correct option.
Note: We should know the different properties of the trigonometric function and with the help of this concept this question can be easily solved. Trigonometry is the study of the relationship between the angles and sides of a right triangle. Right Triangle is a triangle where one of its interior angles is a right angle (90 degrees). The relation between the sides and angles of a right triangle is the basis for trigonometry. The side opposite the right angle is called the hypotenuse. The sides adjacent to the right angle are called base.
\[\begin{array}{l}\sin {\rm{ }}A{\rm{ }} = {\rm{ }}\dfrac{{side\,{\rm{ }}\,opposite\,{\rm{ }}to\,{\rm{ }}angle\,{\rm{ }}A}}{{hypotenuse}}\\\cos {\rm{ }}A{\rm{ }} = \dfrac{{side\,{\rm{ }}adjacent\,{\rm{ }}to\,{\rm{ }}angle\,{\rm{ }}A}}{{hypotenuse}}\\\tan {\rm{ }}A{\rm{ }} = {\rm{ }}\dfrac{{side\,{\rm{ }}opposite\,{\rm{ }}to\,{\rm{ }}angle\,{\rm{ }}A}}{{side\,{\rm{ }}adjacent\,{\rm{ }}to\,{\rm{ }}angle\,{\rm{ }}A}} = \dfrac{{\sin A}}{{\cos A}}\end{array}\]
\[\cot {\rm{ }}A = \dfrac{1}{{\tan {\rm{ }}A}},\sec {\rm{ }}A = \dfrac{1}{{\cos {\rm{ }}A}},\cos ec{\rm{ }}A = \dfrac{1}{{\sin {\rm{ }}A}}\]
Formula Used: We will use the following formulas/identities:
\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
Complete step-by-step answer:
We will expand sine function and cosine function using the trigonometric identities, \[\sin \left( {A + B} \right)\] and \[\cos \left( {A - B} \right)\]. Therefore, we get
\[ \Rightarrow 2\left( {\sin x\cos \dfrac{\pi }{3} + \cos x\sin \dfrac{\pi }{3}} \right) = \cos x\cos \dfrac{\pi }{6} + \sin x\sin \dfrac{\pi }{6}\]
We know that the value of \[\sin \dfrac{\pi }{6} = \dfrac{1}{2}\], \[\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\], \[\cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}\] and \[\cos \dfrac{\pi }{3} = \dfrac{1}{2}\]. Therefore, we get
\[ \Rightarrow 2\left( {\sin x \times \dfrac{1}{2} + \cos x \times \dfrac{{\sqrt 3 }}{2}} \right) = \cos x \times \dfrac{{\sqrt 3 }}{2} + \sin x \times \dfrac{1}{2}\]
As all the terms have \[\dfrac{1}{2}\] common.
So, canceling out \[\dfrac{1}{2}\], we get
\[ \Rightarrow 2\left( {\sin x + \cos x \times \sqrt 3 } \right) = \cos x \times \sqrt 3 + \sin x\]
\[ \Rightarrow 2\sin x + 2\cos x \times \sqrt 3 = \cos x \times \sqrt 3 + \sin x\]
Adding and subtracting the like terms, we get
\[ \Rightarrow 2\sin x - \sin x = \cos x \times \sqrt 3 - 2\cos x \times \sqrt 3 \]
\[ \Rightarrow \sin x = - \cos x \times \sqrt 3 \]
Dividing both sides by \[\cos x\], we get
\[ \Rightarrow \dfrac{{\sin x}}{{\cos x}} = - \sqrt 3 \]
We know that the tangent function is the ratio of the sine function to the cosine function.
Therefore, we get
\[ \Rightarrow \tan x = - \sqrt 3 \]
Hence, \[\tan x\] is equal to \[ - \sqrt 3 \].
So, option A is the correct option.
Note: We should know the different properties of the trigonometric function and with the help of this concept this question can be easily solved. Trigonometry is the study of the relationship between the angles and sides of a right triangle. Right Triangle is a triangle where one of its interior angles is a right angle (90 degrees). The relation between the sides and angles of a right triangle is the basis for trigonometry. The side opposite the right angle is called the hypotenuse. The sides adjacent to the right angle are called base.
\[\begin{array}{l}\sin {\rm{ }}A{\rm{ }} = {\rm{ }}\dfrac{{side\,{\rm{ }}\,opposite\,{\rm{ }}to\,{\rm{ }}angle\,{\rm{ }}A}}{{hypotenuse}}\\\cos {\rm{ }}A{\rm{ }} = \dfrac{{side\,{\rm{ }}adjacent\,{\rm{ }}to\,{\rm{ }}angle\,{\rm{ }}A}}{{hypotenuse}}\\\tan {\rm{ }}A{\rm{ }} = {\rm{ }}\dfrac{{side\,{\rm{ }}opposite\,{\rm{ }}to\,{\rm{ }}angle\,{\rm{ }}A}}{{side\,{\rm{ }}adjacent\,{\rm{ }}to\,{\rm{ }}angle\,{\rm{ }}A}} = \dfrac{{\sin A}}{{\cos A}}\end{array}\]
\[\cot {\rm{ }}A = \dfrac{1}{{\tan {\rm{ }}A}},\sec {\rm{ }}A = \dfrac{1}{{\cos {\rm{ }}A}},\cos ec{\rm{ }}A = \dfrac{1}{{\sin {\rm{ }}A}}\]
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

