
If $2s = a + b + c$ then $\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{{\left( {s - a} \right)}^2}}&{{{\left( {s - a} \right)}^2}} \\
{{{\left( {s - b} \right)}^2}}&{{b^2}}&{{{\left( {s - b} \right)}^2}} \\
{{{\left( {s - c} \right)}^2}}&{{{\left( {s - c} \right)}^2}}&{{c^2}}
\end{array}} \right|$ is equal to
A. $2s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)$
B. $2{s^3}\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)$
C. $2{s^2}\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)$
D. $\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)$
Answer
512.1k+ views
Hint: To find the value of a given determinant, first we will convert it into the simplest form. Then, we will perform column and row operations to simplify the determinant.
Complete step-by-step solution:
In this problem, given that $2s = a + b + c$. Let us say a given determinant is denoted by $D$. So, we need to find the value of $D = \left| {\begin{array}{*{20}{c}}
{{a^2}}&{{{\left( {s - a} \right)}^2}}&{{{\left( {s - a} \right)}^2}} \\
{{{\left( {s - b} \right)}^2}}&{{b^2}}&{{{\left( {s - b} \right)}^2}} \\
{{{\left( {s - c} \right)}^2}}&{{{\left( {s - c} \right)}^2}}&{{c^2}}
\end{array}} \right|$.
To convert into the simplest form, let us assume $s - a = p,\;s - b = q$ and $s - c = r$. Then, $
p + q = s - a + s - b = 2s - a - b = c\quad \left[ {\because 2s = a + b + c} \right] \\
q + r = s - b + s - c = 2s - b - c = a\quad \left[ {\because 2s = a + b + c} \right] \\
r + p = s - c + s - a = 2s - a - c = b\quad \left[ {\because 2s = a + b + c} \right] \\
p + q + r = s - a + s - b + s - c = 3s - \left( {a + b + c} \right) = 3s - 2s = s\quad \left[ {\because 2s = a + b + c} \right] \\
$
Now we can write the given determinant as $D = \left| {\begin{array}{*{20}{c}}
{{{\left( {q + r} \right)}^2}}&{{p^2}}&{{p^2}} \\
{{q^2}}&{{{\left( {r + p} \right)}^2}}&{{q^2}} \\
{{r^2}}&{{r^2}}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|$.
Now we will perform column operations to simplify the above determinant.
Applying ${C_1} \to {C_1} - {C_2}$ and ${C_2} \to {C_2} - {C_3}$, we get
$D = \left| {\begin{array}{*{20}{c}}
{{{\left( {q + r} \right)}^2} - {p^2}}&{{p^2} - {p^2}}&{{p^2}} \\
{{q^2} - {{\left( {r + p} \right)}^2}}&{{{\left( {r + p} \right)}^2} - {q^2}}&{{q^2}} \\
{{r^2} - {r^2}}&{{r^2} - {{\left( {p + q} \right)}^2}}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|$
Use the formula ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ and simplify the above determinant, we get
$D = \left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)\left( {q + r + p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)\left( {q + r + p} \right)}&{\left( {r + p - q} \right)\left( {r + p + q} \right)}&{{q^2}} \\
0&{\left( {r - p - q} \right)\left( {r + p + q} \right)}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|$
Let us take the factor $\left( {p + q + r} \right)$ common out from the first and second column. Therefore, we get
$D = {\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
0&{\left( {r - p - q} \right)}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|$
Applying ${R_3} \to {R_3} - \left( {{R_1} + {R_2}} \right)$, we get
$D = {\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{0 - \left( {q + r - p + q - r - p} \right)}&{\left( {r - p - q} \right) - \left( {0 + r + p - q} \right)}&{{{\left( {p + q} \right)}^2} - \left( {{p^2} + {q^2}} \right)}
\end{array}} \right|$
Simplify the above determinant, we get
$D = {\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{2p - 2q}&{ - 2p}&{2pq}
\end{array}} \right|\quad \left[ {\because {{\left( {p + q} \right)}^2} = {p^2} + 2pq + {q^2}} \right]$
Let us take the number $2$ common out from the third row. Therefore, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
Applying ${R_1} \to {R_1} - \left( {\dfrac{p}{q}} \right){R_3}$, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right) - \dfrac{p}{q}\left( {p - q} \right)}&{0 - \dfrac{p}{q}\left( { - p} \right)}&{{p^2} - \dfrac{p}{q}\left( {pq} \right)} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
Simplify the above determinant, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}}&0 \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
Applying ${R_2} \to {R_2} - \left( {\dfrac{q}{p}} \right){R_3}$, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}}&0 \\
{\left( {q - r - p} \right) - \dfrac{q}{p}\left( {p - q} \right)}&{\left( {r + p - q} \right) - \dfrac{q}{p}\left( { - p} \right)}&{{q^2} - \dfrac{q}{p}\left( {pq} \right)} \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
Simplify the above determinant, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}}&0 \\
{ - r - p + \dfrac{{{q^2}}}{p}}&{r + p}&0 \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
We can see that in the third column two elements are zero. So, let us expand the above determinant along the third column. Therefore, we get
$D = 2pq{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}} \\
{ - r - p + \dfrac{{{q^2}}}{p}}&{r + p}
\end{array}} \right|$
Applying ${C_1} \to {C_1} + {C_2}$, we get
$D = 2pq{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q} + \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}} \\
{ - r - p + \dfrac{{{q^2}}}{p} + r + p}&{r + p}
\end{array}} \right|$
Simplify the above determinant, we get
$D = 2pq{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r}&{\dfrac{{{p^2}}}{q}} \\
{\dfrac{{{q^2}}}{p}}&{r + p}
\end{array}} \right|$
We can see that now there are two rows and two columns in the above determinant. Let us expand this determinant. Therefore, we get
$D = 2pq{\left( {p + q + r} \right)^2}\left[ {\left( {q + r} \right)\left( {r + p} \right) - \left( {\dfrac{{{p^2}}}{q}} \right)\left( {\dfrac{{{q^2}}}{p}} \right)} \right]$
Simplify the above expression, we get
$
D = 2pq{\left( {p + q + r} \right)^2}\left[ {qr + qp + {r^2} + rp - pq} \right] \\
\Rightarrow D = 2pq{\left( {p + q + r} \right)^2}\left[ {qr + {r^2} + rp} \right] \\
\Rightarrow D = 2pq{\left( {p + q + r} \right)^2}r\left[ {q + r + p} \right] \\
\Rightarrow D = 2pqr{\left( {p + q + r} \right)^3} \\
$
Now we have $s - a = p,\;s - b = q,\;s - c = r$ and $p + q + r = s$. Therefore, we get
$
D = 2\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right){s^3} \\
\Rightarrow D = 2{s^3}\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right) \\
$
Therefore, we get $\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{{\left( {s - a} \right)}^2}}&{{{\left( {s - a} \right)}^2}} \\
{{{\left( {s - b} \right)}^2}}&{{b^2}}&{{{\left( {s - b} \right)}^2}} \\
{{{\left( {s - c} \right)}^2}}&{{{\left( {s - c} \right)}^2}}&{{c^2}}
\end{array}} \right| = 2{s^3}\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)$.
Note: $\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}}&{{b_2}}&{{b_3}} \\
{{c_1}}&{{c_2}}&{{c_3}}
\end{array}} \right|$ is calculated as ${a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)$. We can perform row operations as well as column operations to convert the given determinant into simplest form.
Complete step-by-step solution:
In this problem, given that $2s = a + b + c$. Let us say a given determinant is denoted by $D$. So, we need to find the value of $D = \left| {\begin{array}{*{20}{c}}
{{a^2}}&{{{\left( {s - a} \right)}^2}}&{{{\left( {s - a} \right)}^2}} \\
{{{\left( {s - b} \right)}^2}}&{{b^2}}&{{{\left( {s - b} \right)}^2}} \\
{{{\left( {s - c} \right)}^2}}&{{{\left( {s - c} \right)}^2}}&{{c^2}}
\end{array}} \right|$.
To convert into the simplest form, let us assume $s - a = p,\;s - b = q$ and $s - c = r$. Then, $
p + q = s - a + s - b = 2s - a - b = c\quad \left[ {\because 2s = a + b + c} \right] \\
q + r = s - b + s - c = 2s - b - c = a\quad \left[ {\because 2s = a + b + c} \right] \\
r + p = s - c + s - a = 2s - a - c = b\quad \left[ {\because 2s = a + b + c} \right] \\
p + q + r = s - a + s - b + s - c = 3s - \left( {a + b + c} \right) = 3s - 2s = s\quad \left[ {\because 2s = a + b + c} \right] \\
$
Now we can write the given determinant as $D = \left| {\begin{array}{*{20}{c}}
{{{\left( {q + r} \right)}^2}}&{{p^2}}&{{p^2}} \\
{{q^2}}&{{{\left( {r + p} \right)}^2}}&{{q^2}} \\
{{r^2}}&{{r^2}}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|$.
Now we will perform column operations to simplify the above determinant.
Applying ${C_1} \to {C_1} - {C_2}$ and ${C_2} \to {C_2} - {C_3}$, we get
$D = \left| {\begin{array}{*{20}{c}}
{{{\left( {q + r} \right)}^2} - {p^2}}&{{p^2} - {p^2}}&{{p^2}} \\
{{q^2} - {{\left( {r + p} \right)}^2}}&{{{\left( {r + p} \right)}^2} - {q^2}}&{{q^2}} \\
{{r^2} - {r^2}}&{{r^2} - {{\left( {p + q} \right)}^2}}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|$
Use the formula ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ and simplify the above determinant, we get
$D = \left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)\left( {q + r + p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)\left( {q + r + p} \right)}&{\left( {r + p - q} \right)\left( {r + p + q} \right)}&{{q^2}} \\
0&{\left( {r - p - q} \right)\left( {r + p + q} \right)}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|$
Let us take the factor $\left( {p + q + r} \right)$ common out from the first and second column. Therefore, we get
$D = {\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
0&{\left( {r - p - q} \right)}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|$
Applying ${R_3} \to {R_3} - \left( {{R_1} + {R_2}} \right)$, we get
$D = {\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{0 - \left( {q + r - p + q - r - p} \right)}&{\left( {r - p - q} \right) - \left( {0 + r + p - q} \right)}&{{{\left( {p + q} \right)}^2} - \left( {{p^2} + {q^2}} \right)}
\end{array}} \right|$
Simplify the above determinant, we get
$D = {\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{2p - 2q}&{ - 2p}&{2pq}
\end{array}} \right|\quad \left[ {\because {{\left( {p + q} \right)}^2} = {p^2} + 2pq + {q^2}} \right]$
Let us take the number $2$ common out from the third row. Therefore, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
Applying ${R_1} \to {R_1} - \left( {\dfrac{p}{q}} \right){R_3}$, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right) - \dfrac{p}{q}\left( {p - q} \right)}&{0 - \dfrac{p}{q}\left( { - p} \right)}&{{p^2} - \dfrac{p}{q}\left( {pq} \right)} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
Simplify the above determinant, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}}&0 \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
Applying ${R_2} \to {R_2} - \left( {\dfrac{q}{p}} \right){R_3}$, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}}&0 \\
{\left( {q - r - p} \right) - \dfrac{q}{p}\left( {p - q} \right)}&{\left( {r + p - q} \right) - \dfrac{q}{p}\left( { - p} \right)}&{{q^2} - \dfrac{q}{p}\left( {pq} \right)} \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
Simplify the above determinant, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}}&0 \\
{ - r - p + \dfrac{{{q^2}}}{p}}&{r + p}&0 \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
We can see that in the third column two elements are zero. So, let us expand the above determinant along the third column. Therefore, we get
$D = 2pq{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}} \\
{ - r - p + \dfrac{{{q^2}}}{p}}&{r + p}
\end{array}} \right|$
Applying ${C_1} \to {C_1} + {C_2}$, we get
$D = 2pq{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q} + \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}} \\
{ - r - p + \dfrac{{{q^2}}}{p} + r + p}&{r + p}
\end{array}} \right|$
Simplify the above determinant, we get
$D = 2pq{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r}&{\dfrac{{{p^2}}}{q}} \\
{\dfrac{{{q^2}}}{p}}&{r + p}
\end{array}} \right|$
We can see that now there are two rows and two columns in the above determinant. Let us expand this determinant. Therefore, we get
$D = 2pq{\left( {p + q + r} \right)^2}\left[ {\left( {q + r} \right)\left( {r + p} \right) - \left( {\dfrac{{{p^2}}}{q}} \right)\left( {\dfrac{{{q^2}}}{p}} \right)} \right]$
Simplify the above expression, we get
$
D = 2pq{\left( {p + q + r} \right)^2}\left[ {qr + qp + {r^2} + rp - pq} \right] \\
\Rightarrow D = 2pq{\left( {p + q + r} \right)^2}\left[ {qr + {r^2} + rp} \right] \\
\Rightarrow D = 2pq{\left( {p + q + r} \right)^2}r\left[ {q + r + p} \right] \\
\Rightarrow D = 2pqr{\left( {p + q + r} \right)^3} \\
$
Now we have $s - a = p,\;s - b = q,\;s - c = r$ and $p + q + r = s$. Therefore, we get
$
D = 2\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right){s^3} \\
\Rightarrow D = 2{s^3}\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right) \\
$
Therefore, we get $\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{{\left( {s - a} \right)}^2}}&{{{\left( {s - a} \right)}^2}} \\
{{{\left( {s - b} \right)}^2}}&{{b^2}}&{{{\left( {s - b} \right)}^2}} \\
{{{\left( {s - c} \right)}^2}}&{{{\left( {s - c} \right)}^2}}&{{c^2}}
\end{array}} \right| = 2{s^3}\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)$.
Note: $\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}}&{{b_2}}&{{b_3}} \\
{{c_1}}&{{c_2}}&{{c_3}}
\end{array}} \right|$ is calculated as ${a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)$. We can perform row operations as well as column operations to convert the given determinant into simplest form.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Where can free central placentation be seen class 11 biology CBSE

What is the molecular weight of NaOH class 11 chemistry CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE
