
If $2s = a + b + c$ then $\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{{\left( {s - a} \right)}^2}}&{{{\left( {s - a} \right)}^2}} \\
{{{\left( {s - b} \right)}^2}}&{{b^2}}&{{{\left( {s - b} \right)}^2}} \\
{{{\left( {s - c} \right)}^2}}&{{{\left( {s - c} \right)}^2}}&{{c^2}}
\end{array}} \right|$ is equal to
A. $2s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)$
B. $2{s^3}\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)$
C. $2{s^2}\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)$
D. $\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)$
Answer
590.4k+ views
Hint: To find the value of a given determinant, first we will convert it into the simplest form. Then, we will perform column and row operations to simplify the determinant.
Complete step-by-step solution:
In this problem, given that $2s = a + b + c$. Let us say a given determinant is denoted by $D$. So, we need to find the value of $D = \left| {\begin{array}{*{20}{c}}
{{a^2}}&{{{\left( {s - a} \right)}^2}}&{{{\left( {s - a} \right)}^2}} \\
{{{\left( {s - b} \right)}^2}}&{{b^2}}&{{{\left( {s - b} \right)}^2}} \\
{{{\left( {s - c} \right)}^2}}&{{{\left( {s - c} \right)}^2}}&{{c^2}}
\end{array}} \right|$.
To convert into the simplest form, let us assume $s - a = p,\;s - b = q$ and $s - c = r$. Then, $
p + q = s - a + s - b = 2s - a - b = c\quad \left[ {\because 2s = a + b + c} \right] \\
q + r = s - b + s - c = 2s - b - c = a\quad \left[ {\because 2s = a + b + c} \right] \\
r + p = s - c + s - a = 2s - a - c = b\quad \left[ {\because 2s = a + b + c} \right] \\
p + q + r = s - a + s - b + s - c = 3s - \left( {a + b + c} \right) = 3s - 2s = s\quad \left[ {\because 2s = a + b + c} \right] \\
$
Now we can write the given determinant as $D = \left| {\begin{array}{*{20}{c}}
{{{\left( {q + r} \right)}^2}}&{{p^2}}&{{p^2}} \\
{{q^2}}&{{{\left( {r + p} \right)}^2}}&{{q^2}} \\
{{r^2}}&{{r^2}}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|$.
Now we will perform column operations to simplify the above determinant.
Applying ${C_1} \to {C_1} - {C_2}$ and ${C_2} \to {C_2} - {C_3}$, we get
$D = \left| {\begin{array}{*{20}{c}}
{{{\left( {q + r} \right)}^2} - {p^2}}&{{p^2} - {p^2}}&{{p^2}} \\
{{q^2} - {{\left( {r + p} \right)}^2}}&{{{\left( {r + p} \right)}^2} - {q^2}}&{{q^2}} \\
{{r^2} - {r^2}}&{{r^2} - {{\left( {p + q} \right)}^2}}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|$
Use the formula ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ and simplify the above determinant, we get
$D = \left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)\left( {q + r + p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)\left( {q + r + p} \right)}&{\left( {r + p - q} \right)\left( {r + p + q} \right)}&{{q^2}} \\
0&{\left( {r - p - q} \right)\left( {r + p + q} \right)}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|$
Let us take the factor $\left( {p + q + r} \right)$ common out from the first and second column. Therefore, we get
$D = {\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
0&{\left( {r - p - q} \right)}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|$
Applying ${R_3} \to {R_3} - \left( {{R_1} + {R_2}} \right)$, we get
$D = {\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{0 - \left( {q + r - p + q - r - p} \right)}&{\left( {r - p - q} \right) - \left( {0 + r + p - q} \right)}&{{{\left( {p + q} \right)}^2} - \left( {{p^2} + {q^2}} \right)}
\end{array}} \right|$
Simplify the above determinant, we get
$D = {\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{2p - 2q}&{ - 2p}&{2pq}
\end{array}} \right|\quad \left[ {\because {{\left( {p + q} \right)}^2} = {p^2} + 2pq + {q^2}} \right]$
Let us take the number $2$ common out from the third row. Therefore, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
Applying ${R_1} \to {R_1} - \left( {\dfrac{p}{q}} \right){R_3}$, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right) - \dfrac{p}{q}\left( {p - q} \right)}&{0 - \dfrac{p}{q}\left( { - p} \right)}&{{p^2} - \dfrac{p}{q}\left( {pq} \right)} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
Simplify the above determinant, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}}&0 \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
Applying ${R_2} \to {R_2} - \left( {\dfrac{q}{p}} \right){R_3}$, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}}&0 \\
{\left( {q - r - p} \right) - \dfrac{q}{p}\left( {p - q} \right)}&{\left( {r + p - q} \right) - \dfrac{q}{p}\left( { - p} \right)}&{{q^2} - \dfrac{q}{p}\left( {pq} \right)} \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
Simplify the above determinant, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}}&0 \\
{ - r - p + \dfrac{{{q^2}}}{p}}&{r + p}&0 \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
We can see that in the third column two elements are zero. So, let us expand the above determinant along the third column. Therefore, we get
$D = 2pq{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}} \\
{ - r - p + \dfrac{{{q^2}}}{p}}&{r + p}
\end{array}} \right|$
Applying ${C_1} \to {C_1} + {C_2}$, we get
$D = 2pq{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q} + \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}} \\
{ - r - p + \dfrac{{{q^2}}}{p} + r + p}&{r + p}
\end{array}} \right|$
Simplify the above determinant, we get
$D = 2pq{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r}&{\dfrac{{{p^2}}}{q}} \\
{\dfrac{{{q^2}}}{p}}&{r + p}
\end{array}} \right|$
We can see that now there are two rows and two columns in the above determinant. Let us expand this determinant. Therefore, we get
$D = 2pq{\left( {p + q + r} \right)^2}\left[ {\left( {q + r} \right)\left( {r + p} \right) - \left( {\dfrac{{{p^2}}}{q}} \right)\left( {\dfrac{{{q^2}}}{p}} \right)} \right]$
Simplify the above expression, we get
$
D = 2pq{\left( {p + q + r} \right)^2}\left[ {qr + qp + {r^2} + rp - pq} \right] \\
\Rightarrow D = 2pq{\left( {p + q + r} \right)^2}\left[ {qr + {r^2} + rp} \right] \\
\Rightarrow D = 2pq{\left( {p + q + r} \right)^2}r\left[ {q + r + p} \right] \\
\Rightarrow D = 2pqr{\left( {p + q + r} \right)^3} \\
$
Now we have $s - a = p,\;s - b = q,\;s - c = r$ and $p + q + r = s$. Therefore, we get
$
D = 2\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right){s^3} \\
\Rightarrow D = 2{s^3}\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right) \\
$
Therefore, we get $\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{{\left( {s - a} \right)}^2}}&{{{\left( {s - a} \right)}^2}} \\
{{{\left( {s - b} \right)}^2}}&{{b^2}}&{{{\left( {s - b} \right)}^2}} \\
{{{\left( {s - c} \right)}^2}}&{{{\left( {s - c} \right)}^2}}&{{c^2}}
\end{array}} \right| = 2{s^3}\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)$.
Note: $\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}}&{{b_2}}&{{b_3}} \\
{{c_1}}&{{c_2}}&{{c_3}}
\end{array}} \right|$ is calculated as ${a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)$. We can perform row operations as well as column operations to convert the given determinant into simplest form.
Complete step-by-step solution:
In this problem, given that $2s = a + b + c$. Let us say a given determinant is denoted by $D$. So, we need to find the value of $D = \left| {\begin{array}{*{20}{c}}
{{a^2}}&{{{\left( {s - a} \right)}^2}}&{{{\left( {s - a} \right)}^2}} \\
{{{\left( {s - b} \right)}^2}}&{{b^2}}&{{{\left( {s - b} \right)}^2}} \\
{{{\left( {s - c} \right)}^2}}&{{{\left( {s - c} \right)}^2}}&{{c^2}}
\end{array}} \right|$.
To convert into the simplest form, let us assume $s - a = p,\;s - b = q$ and $s - c = r$. Then, $
p + q = s - a + s - b = 2s - a - b = c\quad \left[ {\because 2s = a + b + c} \right] \\
q + r = s - b + s - c = 2s - b - c = a\quad \left[ {\because 2s = a + b + c} \right] \\
r + p = s - c + s - a = 2s - a - c = b\quad \left[ {\because 2s = a + b + c} \right] \\
p + q + r = s - a + s - b + s - c = 3s - \left( {a + b + c} \right) = 3s - 2s = s\quad \left[ {\because 2s = a + b + c} \right] \\
$
Now we can write the given determinant as $D = \left| {\begin{array}{*{20}{c}}
{{{\left( {q + r} \right)}^2}}&{{p^2}}&{{p^2}} \\
{{q^2}}&{{{\left( {r + p} \right)}^2}}&{{q^2}} \\
{{r^2}}&{{r^2}}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|$.
Now we will perform column operations to simplify the above determinant.
Applying ${C_1} \to {C_1} - {C_2}$ and ${C_2} \to {C_2} - {C_3}$, we get
$D = \left| {\begin{array}{*{20}{c}}
{{{\left( {q + r} \right)}^2} - {p^2}}&{{p^2} - {p^2}}&{{p^2}} \\
{{q^2} - {{\left( {r + p} \right)}^2}}&{{{\left( {r + p} \right)}^2} - {q^2}}&{{q^2}} \\
{{r^2} - {r^2}}&{{r^2} - {{\left( {p + q} \right)}^2}}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|$
Use the formula ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ and simplify the above determinant, we get
$D = \left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)\left( {q + r + p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)\left( {q + r + p} \right)}&{\left( {r + p - q} \right)\left( {r + p + q} \right)}&{{q^2}} \\
0&{\left( {r - p - q} \right)\left( {r + p + q} \right)}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|$
Let us take the factor $\left( {p + q + r} \right)$ common out from the first and second column. Therefore, we get
$D = {\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
0&{\left( {r - p - q} \right)}&{{{\left( {p + q} \right)}^2}}
\end{array}} \right|$
Applying ${R_3} \to {R_3} - \left( {{R_1} + {R_2}} \right)$, we get
$D = {\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{0 - \left( {q + r - p + q - r - p} \right)}&{\left( {r - p - q} \right) - \left( {0 + r + p - q} \right)}&{{{\left( {p + q} \right)}^2} - \left( {{p^2} + {q^2}} \right)}
\end{array}} \right|$
Simplify the above determinant, we get
$D = {\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{2p - 2q}&{ - 2p}&{2pq}
\end{array}} \right|\quad \left[ {\because {{\left( {p + q} \right)}^2} = {p^2} + 2pq + {q^2}} \right]$
Let us take the number $2$ common out from the third row. Therefore, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right)}&0&{{p^2}} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
Applying ${R_1} \to {R_1} - \left( {\dfrac{p}{q}} \right){R_3}$, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {q + r - p} \right) - \dfrac{p}{q}\left( {p - q} \right)}&{0 - \dfrac{p}{q}\left( { - p} \right)}&{{p^2} - \dfrac{p}{q}\left( {pq} \right)} \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
Simplify the above determinant, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}}&0 \\
{\left( {q - r - p} \right)}&{\left( {r + p - q} \right)}&{{q^2}} \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
Applying ${R_2} \to {R_2} - \left( {\dfrac{q}{p}} \right){R_3}$, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}}&0 \\
{\left( {q - r - p} \right) - \dfrac{q}{p}\left( {p - q} \right)}&{\left( {r + p - q} \right) - \dfrac{q}{p}\left( { - p} \right)}&{{q^2} - \dfrac{q}{p}\left( {pq} \right)} \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
Simplify the above determinant, we get
$D = 2{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}}&0 \\
{ - r - p + \dfrac{{{q^2}}}{p}}&{r + p}&0 \\
{p - q}&{ - p}&{pq}
\end{array}} \right|$
We can see that in the third column two elements are zero. So, let us expand the above determinant along the third column. Therefore, we get
$D = 2pq{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}} \\
{ - r - p + \dfrac{{{q^2}}}{p}}&{r + p}
\end{array}} \right|$
Applying ${C_1} \to {C_1} + {C_2}$, we get
$D = 2pq{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r - \dfrac{{{p^2}}}{q} + \dfrac{{{p^2}}}{q}}&{\dfrac{{{p^2}}}{q}} \\
{ - r - p + \dfrac{{{q^2}}}{p} + r + p}&{r + p}
\end{array}} \right|$
Simplify the above determinant, we get
$D = 2pq{\left( {p + q + r} \right)^2}\left| {\begin{array}{*{20}{c}}
{q + r}&{\dfrac{{{p^2}}}{q}} \\
{\dfrac{{{q^2}}}{p}}&{r + p}
\end{array}} \right|$
We can see that now there are two rows and two columns in the above determinant. Let us expand this determinant. Therefore, we get
$D = 2pq{\left( {p + q + r} \right)^2}\left[ {\left( {q + r} \right)\left( {r + p} \right) - \left( {\dfrac{{{p^2}}}{q}} \right)\left( {\dfrac{{{q^2}}}{p}} \right)} \right]$
Simplify the above expression, we get
$
D = 2pq{\left( {p + q + r} \right)^2}\left[ {qr + qp + {r^2} + rp - pq} \right] \\
\Rightarrow D = 2pq{\left( {p + q + r} \right)^2}\left[ {qr + {r^2} + rp} \right] \\
\Rightarrow D = 2pq{\left( {p + q + r} \right)^2}r\left[ {q + r + p} \right] \\
\Rightarrow D = 2pqr{\left( {p + q + r} \right)^3} \\
$
Now we have $s - a = p,\;s - b = q,\;s - c = r$ and $p + q + r = s$. Therefore, we get
$
D = 2\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right){s^3} \\
\Rightarrow D = 2{s^3}\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right) \\
$
Therefore, we get $\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{{\left( {s - a} \right)}^2}}&{{{\left( {s - a} \right)}^2}} \\
{{{\left( {s - b} \right)}^2}}&{{b^2}}&{{{\left( {s - b} \right)}^2}} \\
{{{\left( {s - c} \right)}^2}}&{{{\left( {s - c} \right)}^2}}&{{c^2}}
\end{array}} \right| = 2{s^3}\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)$.
Note: $\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}}&{{b_2}}&{{b_3}} \\
{{c_1}}&{{c_2}}&{{c_3}}
\end{array}} \right|$ is calculated as ${a_1}\left( {{b_2}{c_3} - {b_3}{c_2}} \right) - {a_2}\left( {{b_1}{c_3} - {b_3}{c_1}} \right) + {a_3}\left( {{b_1}{c_2} - {b_2}{c_1}} \right)$. We can perform row operations as well as column operations to convert the given determinant into simplest form.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

