
If ${}^{2n}{C_3}:{}^n{P_2} = 10:3\left( {n \in N} \right)$ , then n is
A.4
B.7
C.3
D.6
Answer
580.2k+ views
Hint: Firstly, find the values of ${}^{2n}{C_3}$ and ${}^n{P_2}$ by using the formulae ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ and ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$ respectively.
Then, substitute the values of ${}^{2n}{C_3}$ and ${}^n{P_2}$ in ${}^{2n}{C_3}:{}^n{P_2} = 10:3$ to form an equation in the terms of n.
Finally, solve the equation to get the value of n.
Complete step-by-step answer:
It is given that ${}^{2n}{C_3}:{}^n{P_2} = 10:3\left( {n \in N} \right)$ .
Now, using ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ , find the value of ${}^{2n}{C_3}$ .
$
{}^{2n}{C_3} = \dfrac{{2n!}}{{3!\left( {2n - 3} \right)!}} \\
= \dfrac{{\left( {2n} \right)\left( {2n - 1} \right)\left( {2n - 2} \right)\left( {2n - 3} \right)!}}{{3!\left( {2n - 3} \right)!}} \\
= \dfrac{{\left( {2n} \right)\left( {2n - 1} \right)\left( {2n - 2} \right)}}{6} \\
$
Also, using ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$ , find the value of ${}^n{P_2}$ .
$
{}^n{P_2} = \dfrac{{n!}}{{\left( {n - 2} \right)!}} \\
= \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!}} \\
= n\left( {n - 1} \right) \\
$
Now, to get taking ratio ${}^{2n}{C_3}:{}^n{P_2} = 10:3$
$\Rightarrow \dfrac{{{}^{2n}{C_3}}}{{{}^n{P_2}}} = \dfrac{{10}}{3}$
Substituting the values of ${}^{2n}{C_3}$ and ${}^n{P_2}$ in above ratio, we get
$
\Rightarrow \dfrac{{\dfrac{{2n\left( {2n - 1} \right)\left( {2n - 2} \right)}}{6}}}{{n\left( {n - 1} \right)}} = \dfrac{{10}}{3} \\
\Rightarrow \dfrac{{ \times 2n\left( {2n - 1} \right)\left( {n - 1} \right)}}{{6n\left( {n - 1} \right)}} = \dfrac{{10}}{3} \\
\Rightarrow \dfrac{{2\left( {2n - 1} \right)}}{3} = \dfrac{{10}}{3} \\
\Rightarrow 2n - 1 = \dfrac{{10}}{2} \\
\Rightarrow 2n - 1 = 5 \\
\Rightarrow 2n = 6 \\
\Rightarrow n = \dfrac{6}{2} \\
\Rightarrow n = 3 \\
$
Thus, we get \[n = 3\] .
So, option (C) is correct.
Note: Here, reducing the terms \[2n!\] up to \[\left( {2n-3} \right)!\] in ${}^{2n}{C_3}$ and \[n!\] up to \[\left( {n-2} \right)!\] in ${}^n{P_2}$ , will help to solve the question easily.
To reduce any n! up to \[\left( {n-r} \right)!\] , we have to multiply the terms between n! and \[\left( {n-r} \right)!\] in descending order i.e. $n\left( {n - 1} \right)\left( {n - 2} \right)....\left( {n - r - 1} \right)\left( {n - r} \right)!$ .
Then, substitute the values of ${}^{2n}{C_3}$ and ${}^n{P_2}$ in ${}^{2n}{C_3}:{}^n{P_2} = 10:3$ to form an equation in the terms of n.
Finally, solve the equation to get the value of n.
Complete step-by-step answer:
It is given that ${}^{2n}{C_3}:{}^n{P_2} = 10:3\left( {n \in N} \right)$ .
Now, using ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ , find the value of ${}^{2n}{C_3}$ .
$
{}^{2n}{C_3} = \dfrac{{2n!}}{{3!\left( {2n - 3} \right)!}} \\
= \dfrac{{\left( {2n} \right)\left( {2n - 1} \right)\left( {2n - 2} \right)\left( {2n - 3} \right)!}}{{3!\left( {2n - 3} \right)!}} \\
= \dfrac{{\left( {2n} \right)\left( {2n - 1} \right)\left( {2n - 2} \right)}}{6} \\
$
Also, using ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$ , find the value of ${}^n{P_2}$ .
$
{}^n{P_2} = \dfrac{{n!}}{{\left( {n - 2} \right)!}} \\
= \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!}} \\
= n\left( {n - 1} \right) \\
$
Now, to get taking ratio ${}^{2n}{C_3}:{}^n{P_2} = 10:3$
$\Rightarrow \dfrac{{{}^{2n}{C_3}}}{{{}^n{P_2}}} = \dfrac{{10}}{3}$
Substituting the values of ${}^{2n}{C_3}$ and ${}^n{P_2}$ in above ratio, we get
$
\Rightarrow \dfrac{{\dfrac{{2n\left( {2n - 1} \right)\left( {2n - 2} \right)}}{6}}}{{n\left( {n - 1} \right)}} = \dfrac{{10}}{3} \\
\Rightarrow \dfrac{{ \times 2n\left( {2n - 1} \right)\left( {n - 1} \right)}}{{6n\left( {n - 1} \right)}} = \dfrac{{10}}{3} \\
\Rightarrow \dfrac{{2\left( {2n - 1} \right)}}{3} = \dfrac{{10}}{3} \\
\Rightarrow 2n - 1 = \dfrac{{10}}{2} \\
\Rightarrow 2n - 1 = 5 \\
\Rightarrow 2n = 6 \\
\Rightarrow n = \dfrac{6}{2} \\
\Rightarrow n = 3 \\
$
Thus, we get \[n = 3\] .
So, option (C) is correct.
Note: Here, reducing the terms \[2n!\] up to \[\left( {2n-3} \right)!\] in ${}^{2n}{C_3}$ and \[n!\] up to \[\left( {n-2} \right)!\] in ${}^n{P_2}$ , will help to solve the question easily.
To reduce any n! up to \[\left( {n-r} \right)!\] , we have to multiply the terms between n! and \[\left( {n-r} \right)!\] in descending order i.e. $n\left( {n - 1} \right)\left( {n - 2} \right)....\left( {n - r - 1} \right)\left( {n - r} \right)!$ .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

