
If \[2\int_0^1 {{{\tan }^{ - 1}}xdx} = \int_0^1 {{{\cot }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} \],then $\int_0^1 {{{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} $ is equal to-
A)$\log 2$ B)$\dfrac{\pi }{2} - \log 4$ C)$\dfrac{\pi }{2} + \log 2$ D)$\log 4$
Answer
591k+ views
Hint- We can use trigonometric identity ${\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}$ to find$\int_0^1 {{{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} $ and then normally integrate the obtained equation.
Complete step-by-step answer:
Given $2\int_0^1 {{{\tan }^{ - 1}}xdx} = \int_0^1 {{{\cot }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} $ and we know that${\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}$ , and then we can rewrite the given equation as
$2\int_0^1 {{{\tan }^{ - 1}}xdx} = \int_0^1 {\dfrac{\pi }{2} - {{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} $
Now let$\int_0^1 {{{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} $=I=$\dfrac{\pi }{2} - 2\int_0^1 {{{\tan }^{ - 1}}xdx} $
Now on integrating $\int_0^1 {{{\tan }^{ - 1}}xdx} $,we have
$
\dfrac{\pi }{2} - 2\left\{ {\left( {{{\tan }^{ - 1}}x\int {1dx} } \right)_0^1 - \left[ {\left( {\dfrac{{d{{\tan }^{ - 1}}x}}{{dx}}} \right)\int {1dx} } \right]_0^1} \right\} \\
\\
$
I=$\dfrac{\pi }{2} - 2\left[ {{{\tan }^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) - \dfrac{1}{2}\left\{ {\log \left( {1 + {x^2}} \right)} \right\}_0^1} \right]$
I=$\dfrac{\pi }{2} - 2\left[ {\dfrac{\pi }{4} - \dfrac{1}{2}\log 2} \right]$
I=$\dfrac{\pi }{2} - \dfrac{\pi }{2} + \log 2$ =$\log 2$
Hence the correct answer is A.
Note: Here, we have solved$\int_0^1 {{{\tan }^{ - 1}}xdx} $ by chain rule and to solve$\int {\dfrac{x}{{\left( {1 + {x^2}} \right)}}} dx$ put$\left( {1 + {x^2}} \right) = t \Rightarrow xdx = \dfrac{{dt}}{2}$.On putting this value the integration becomes simple and you can easily get the answer.
Complete step-by-step answer:
Given $2\int_0^1 {{{\tan }^{ - 1}}xdx} = \int_0^1 {{{\cot }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} $ and we know that${\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}$ , and then we can rewrite the given equation as
$2\int_0^1 {{{\tan }^{ - 1}}xdx} = \int_0^1 {\dfrac{\pi }{2} - {{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} $
Now let$\int_0^1 {{{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} $=I=$\dfrac{\pi }{2} - 2\int_0^1 {{{\tan }^{ - 1}}xdx} $
Now on integrating $\int_0^1 {{{\tan }^{ - 1}}xdx} $,we have
$
\dfrac{\pi }{2} - 2\left\{ {\left( {{{\tan }^{ - 1}}x\int {1dx} } \right)_0^1 - \left[ {\left( {\dfrac{{d{{\tan }^{ - 1}}x}}{{dx}}} \right)\int {1dx} } \right]_0^1} \right\} \\
\\
$
I=$\dfrac{\pi }{2} - 2\left[ {{{\tan }^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) - \dfrac{1}{2}\left\{ {\log \left( {1 + {x^2}} \right)} \right\}_0^1} \right]$
I=$\dfrac{\pi }{2} - 2\left[ {\dfrac{\pi }{4} - \dfrac{1}{2}\log 2} \right]$
I=$\dfrac{\pi }{2} - \dfrac{\pi }{2} + \log 2$ =$\log 2$
Hence the correct answer is A.
Note: Here, we have solved$\int_0^1 {{{\tan }^{ - 1}}xdx} $ by chain rule and to solve$\int {\dfrac{x}{{\left( {1 + {x^2}} \right)}}} dx$ put$\left( {1 + {x^2}} \right) = t \Rightarrow xdx = \dfrac{{dt}}{2}$.On putting this value the integration becomes simple and you can easily get the answer.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

