
If \[2\int_0^1 {{{\tan }^{ - 1}}xdx} = \int_0^1 {{{\cot }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} \],then $\int_0^1 {{{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} $ is equal to-
A)$\log 2$ B)$\dfrac{\pi }{2} - \log 4$ C)$\dfrac{\pi }{2} + \log 2$ D)$\log 4$
Answer
577.2k+ views
Hint- We can use trigonometric identity ${\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}$ to find$\int_0^1 {{{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} $ and then normally integrate the obtained equation.
Complete step-by-step answer:
Given $2\int_0^1 {{{\tan }^{ - 1}}xdx} = \int_0^1 {{{\cot }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} $ and we know that${\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}$ , and then we can rewrite the given equation as
$2\int_0^1 {{{\tan }^{ - 1}}xdx} = \int_0^1 {\dfrac{\pi }{2} - {{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} $
Now let$\int_0^1 {{{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} $=I=$\dfrac{\pi }{2} - 2\int_0^1 {{{\tan }^{ - 1}}xdx} $
Now on integrating $\int_0^1 {{{\tan }^{ - 1}}xdx} $,we have
$
\dfrac{\pi }{2} - 2\left\{ {\left( {{{\tan }^{ - 1}}x\int {1dx} } \right)_0^1 - \left[ {\left( {\dfrac{{d{{\tan }^{ - 1}}x}}{{dx}}} \right)\int {1dx} } \right]_0^1} \right\} \\
\\
$
I=$\dfrac{\pi }{2} - 2\left[ {{{\tan }^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) - \dfrac{1}{2}\left\{ {\log \left( {1 + {x^2}} \right)} \right\}_0^1} \right]$
I=$\dfrac{\pi }{2} - 2\left[ {\dfrac{\pi }{4} - \dfrac{1}{2}\log 2} \right]$
I=$\dfrac{\pi }{2} - \dfrac{\pi }{2} + \log 2$ =$\log 2$
Hence the correct answer is A.
Note: Here, we have solved$\int_0^1 {{{\tan }^{ - 1}}xdx} $ by chain rule and to solve$\int {\dfrac{x}{{\left( {1 + {x^2}} \right)}}} dx$ put$\left( {1 + {x^2}} \right) = t \Rightarrow xdx = \dfrac{{dt}}{2}$.On putting this value the integration becomes simple and you can easily get the answer.
Complete step-by-step answer:
Given $2\int_0^1 {{{\tan }^{ - 1}}xdx} = \int_0^1 {{{\cot }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} $ and we know that${\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}$ , and then we can rewrite the given equation as
$2\int_0^1 {{{\tan }^{ - 1}}xdx} = \int_0^1 {\dfrac{\pi }{2} - {{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} $
Now let$\int_0^1 {{{\tan }^{ - 1}}\left( {1 - x + {x^2}} \right)dx} $=I=$\dfrac{\pi }{2} - 2\int_0^1 {{{\tan }^{ - 1}}xdx} $
Now on integrating $\int_0^1 {{{\tan }^{ - 1}}xdx} $,we have
$
\dfrac{\pi }{2} - 2\left\{ {\left( {{{\tan }^{ - 1}}x\int {1dx} } \right)_0^1 - \left[ {\left( {\dfrac{{d{{\tan }^{ - 1}}x}}{{dx}}} \right)\int {1dx} } \right]_0^1} \right\} \\
\\
$
I=$\dfrac{\pi }{2} - 2\left[ {{{\tan }^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) - \dfrac{1}{2}\left\{ {\log \left( {1 + {x^2}} \right)} \right\}_0^1} \right]$
I=$\dfrac{\pi }{2} - 2\left[ {\dfrac{\pi }{4} - \dfrac{1}{2}\log 2} \right]$
I=$\dfrac{\pi }{2} - \dfrac{\pi }{2} + \log 2$ =$\log 2$
Hence the correct answer is A.
Note: Here, we have solved$\int_0^1 {{{\tan }^{ - 1}}xdx} $ by chain rule and to solve$\int {\dfrac{x}{{\left( {1 + {x^2}} \right)}}} dx$ put$\left( {1 + {x^2}} \right) = t \Rightarrow xdx = \dfrac{{dt}}{2}$.On putting this value the integration becomes simple and you can easily get the answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

