
If \[{}^{22}{{P}_{r-1}}:{}^{20}{{P}_{r+2}}=11:52\], find r.
Answer
592.8k+ views
Hint:The expression is that of Permutation, which represents ordered matters. For number of permutation of n things taken r at a time = \[{}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}\]. Simplify the given expression with this formula and find the value of r.
Complete step-by-step answer:
Permutation of a set is an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its element. Permutation is also the linear order of an ordered set. Thus the number of permutation (ordered matters) of n things taken r at a time is given as,
\[{}^{n}{{P}_{r}}=P\left( n,r \right)\dfrac{n!}{\left( n-r \right)!}\]
Now, we have been given that,
\[{}^{22}{{P}_{r-1}}:{}^{20}{{P}_{r+2}}=11:52…...(1)\]
Let us simplify it as per the formula of Permutation.
\[{}^{22}{{P}_{r+1}}=\dfrac{22!}{\left( 22-r-1 \right)!}=\dfrac{22!}{\left( 21-r \right)!}\]
Similarly, \[{}^{20}{{P}_{r+2}}=\dfrac{20!}{\left( 20-r-2 \right)!}=\dfrac{20!}{\left( 18-r \right)!}\]
Thus substitute back the simplified expression of \[{}^{22}{{P}_{r+1}}\] and \[{}^{20}{{P}_{r+2}}\] in (1)
\[{}^{22}{{P}_{r-1}}:{}^{20}{{P}_{r+2}}=11:52\]
\[\Rightarrow \dfrac{22!}{\left( 21-r \right)!}:\dfrac{20!}{\left( 18-r \right)!}=11:52\]
Thus we can write the above as,
\[\dfrac{\dfrac{22!}{\left( 21-r \right)!}}{\dfrac{20!}{\left( 18-r \right)!}}=\dfrac{11}{52}\]
\[\Rightarrow \dfrac{22!}{\left( 21-r \right)!}\times \dfrac{\left( 18-r \right)!}{20!}=\dfrac{11}{52}\]
We can write \[22!=22\times 21\times 20!\]
Similarly we can write, \[\left( 21-r \right)!=\left( 21-r \right)\left( 20-r \right)\left( 19-r \right)\left( 18-r \right)!\]
Thus we can write (1) as,
\[\dfrac{22\times 21\times 20!}{\left( 21-r \right)\left( 20-r \right)\left( 19-r \right)\left( 18-r \right)!}\times \dfrac{\left( 18-r \right)!}{20!}=\dfrac{11}{52}\]
Now cancel out the like terms and cross multiply it.
\[\begin{align}
& \dfrac{22\times 21}{\left( 21-r \right)\left( 20-r \right)\left( 19-r \right)}=\dfrac{11}{52} \\
& \Rightarrow 22\times 21\times 52=11\left( 21-r \right)\left( 20-r \right)\left( 19-r \right) \\
& \Rightarrow \dfrac{22\times 21\times 52}{11}=\left( 21-r \right)\left( 20-r \right)\left( 19-r \right) \\
& \therefore \left( 21-r \right)\left( 20-r \right)\left( 19-r \right)=2\times 21\times 52 \\
& \left( 21-r \right)\left( 20-r \right)\left( 19-r \right)=2\times \left( 3\times 7 \right)\times \left( 4\times 13 \right) \\
& \left( 21-r \right)\left( 20-r \right)\left( 19-r \right)=\left( 2\times 7 \right)\times 13\times \left( 3\times 4 \right) \\
& \left( 21-r \right)\left( 20-r \right)\left( 19-r \right)=14\times 13\times 12 \\
\end{align}\]
Now, 21 – 7 = 14
Similarly, 20 – 7 = 13 and 19 – 7 = 12
\[\begin{align}
& \therefore \left( 21-r \right)\left( 20-r \right)\left( 19-r \right)=14\times 13\times 12 \\
& \Rightarrow \left( 21-r \right)\left( 20-r \right)\left( 19-r \right)=\left( 21-7 \right)\left( 20-7 \right)\left( 19-7 \right) \\
\end{align}\]
Thus we can say that, r = 7.
Hence we get the value of r = 7.
Note: Don’t confuse the formula of permutation with the formula of combination. In combination, the order does not matter. Thus the number of combinations will have the formula, n things taken r at a time:
\[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].We can also verify the answer by substituting value r=7 in the expression \[{}^{22}{{P}_{r-1}}:{}^{20}{{P}_{r+2}}=11:52\] and check whether L.H.S=R.H.S or not.
Complete step-by-step answer:
Permutation of a set is an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its element. Permutation is also the linear order of an ordered set. Thus the number of permutation (ordered matters) of n things taken r at a time is given as,
\[{}^{n}{{P}_{r}}=P\left( n,r \right)\dfrac{n!}{\left( n-r \right)!}\]
Now, we have been given that,
\[{}^{22}{{P}_{r-1}}:{}^{20}{{P}_{r+2}}=11:52…...(1)\]
Let us simplify it as per the formula of Permutation.
\[{}^{22}{{P}_{r+1}}=\dfrac{22!}{\left( 22-r-1 \right)!}=\dfrac{22!}{\left( 21-r \right)!}\]
Similarly, \[{}^{20}{{P}_{r+2}}=\dfrac{20!}{\left( 20-r-2 \right)!}=\dfrac{20!}{\left( 18-r \right)!}\]
Thus substitute back the simplified expression of \[{}^{22}{{P}_{r+1}}\] and \[{}^{20}{{P}_{r+2}}\] in (1)
\[{}^{22}{{P}_{r-1}}:{}^{20}{{P}_{r+2}}=11:52\]
\[\Rightarrow \dfrac{22!}{\left( 21-r \right)!}:\dfrac{20!}{\left( 18-r \right)!}=11:52\]
Thus we can write the above as,
\[\dfrac{\dfrac{22!}{\left( 21-r \right)!}}{\dfrac{20!}{\left( 18-r \right)!}}=\dfrac{11}{52}\]
\[\Rightarrow \dfrac{22!}{\left( 21-r \right)!}\times \dfrac{\left( 18-r \right)!}{20!}=\dfrac{11}{52}\]
We can write \[22!=22\times 21\times 20!\]
Similarly we can write, \[\left( 21-r \right)!=\left( 21-r \right)\left( 20-r \right)\left( 19-r \right)\left( 18-r \right)!\]
Thus we can write (1) as,
\[\dfrac{22\times 21\times 20!}{\left( 21-r \right)\left( 20-r \right)\left( 19-r \right)\left( 18-r \right)!}\times \dfrac{\left( 18-r \right)!}{20!}=\dfrac{11}{52}\]
Now cancel out the like terms and cross multiply it.
\[\begin{align}
& \dfrac{22\times 21}{\left( 21-r \right)\left( 20-r \right)\left( 19-r \right)}=\dfrac{11}{52} \\
& \Rightarrow 22\times 21\times 52=11\left( 21-r \right)\left( 20-r \right)\left( 19-r \right) \\
& \Rightarrow \dfrac{22\times 21\times 52}{11}=\left( 21-r \right)\left( 20-r \right)\left( 19-r \right) \\
& \therefore \left( 21-r \right)\left( 20-r \right)\left( 19-r \right)=2\times 21\times 52 \\
& \left( 21-r \right)\left( 20-r \right)\left( 19-r \right)=2\times \left( 3\times 7 \right)\times \left( 4\times 13 \right) \\
& \left( 21-r \right)\left( 20-r \right)\left( 19-r \right)=\left( 2\times 7 \right)\times 13\times \left( 3\times 4 \right) \\
& \left( 21-r \right)\left( 20-r \right)\left( 19-r \right)=14\times 13\times 12 \\
\end{align}\]
Now, 21 – 7 = 14
Similarly, 20 – 7 = 13 and 19 – 7 = 12
\[\begin{align}
& \therefore \left( 21-r \right)\left( 20-r \right)\left( 19-r \right)=14\times 13\times 12 \\
& \Rightarrow \left( 21-r \right)\left( 20-r \right)\left( 19-r \right)=\left( 21-7 \right)\left( 20-7 \right)\left( 19-7 \right) \\
\end{align}\]
Thus we can say that, r = 7.
Hence we get the value of r = 7.
Note: Don’t confuse the formula of permutation with the formula of combination. In combination, the order does not matter. Thus the number of combinations will have the formula, n things taken r at a time:
\[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].We can also verify the answer by substituting value r=7 in the expression \[{}^{22}{{P}_{r-1}}:{}^{20}{{P}_{r+2}}=11:52\] and check whether L.H.S=R.H.S or not.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

