
If \[22.5\] m of cloth costs Rs. 1350. What is the cost of \[6\dfrac{3}{4}\] m of cloth?
Answer
557.4k+ views
Hint: Here, we will find the price of 1 metre of cloth using the information given in the question. We will find the improper fraction representation of \[6\dfrac{3}{4}\] .Then we will multiply the improper fraction with the price per metre of the cloth to find cost of \[6\dfrac{3}{4}\] m of cloth.
Complete step-by-step answer:
We know the cost of 22.5 metres of cloth. We will use the unitary method to find out the cost of \[6\dfrac{3}{4}\] metres of cloth.
First, we will find the cost of 1 metre of cloth. As 22.5 metres of cloth costs Rs. 1350 dividing 1350 by 22.5 will give us the price of cloth per metre.
Cost of 1 metre cloth \[ = \dfrac{{1350}}{{22.5}}\]
We will remove the decimal in the denominator by multiplying the numerator by 10:
\[ \Rightarrow \] Cost of 1 metre cloth \[ = \dfrac{{13500}}{{225}}\]
Factorizing the numerator and denominator, we get
\[ \Rightarrow \] Cost of 1 metre cloth \[ = \dfrac{{60 \times 9 \times 25}}{{9 \times 25}}\]
We will cancel out the common factors and find the price of 1 metre of cloth. Therefore, we get
\[ \Rightarrow \] Cost of 1 metre cloth \[ = 60\]
The price of 1 metre of cloth is Rs. 60.
We need to find the price of \[6\dfrac{3}{4}\] metres of cloth. First, we will convert \[6\dfrac{3}{4}\] into an improper fraction. We will substitute 6 for \[a\] , 3 for \[b\] and 4 for \[c\] in the formula \[\dfrac{{ac + b}}{c}\] to convert a mixed fraction into an improper fraction:
\[\begin{array}{l}6\dfrac{3}{4} = \dfrac{{\left( {6 \times 4} \right) + 3}}{4}\\ \Rightarrow 6\dfrac{3}{4} = \dfrac{{27}}{4}\end{array}\]
We need to find the price of \[\dfrac{{27}}{4}\] metres of cloth. We will multiply price of 1 metre of cloth by \[\dfrac{{27}}{4}\] :
Cost of \[\dfrac{{27}}{4}\] metre cloth \[ = \dfrac{{27}}{4} \times 60\]
Simplifying the terms, we get
\[ \Rightarrow \]Cost of \[\dfrac{{27}}{4}\] metre cloth \[ = 27 \times 15 = 405\]
$\therefore $ The price of \[6\dfrac{3}{4}\] metres of cloth is 405 rupees.
Note: We can also find the price by using the formula \[\dfrac{{x \times p}}{l}\] where \[x\] is the length of cloth whose price has to be found and \[p\] is the price of cloth of length \[l\] :
\[\begin{array}{l}{\rm{price}} = \dfrac{{\dfrac{{27}}{4} \times 1350}}{{22.5}}\\ \Rightarrow {\rm{price}} = 405\end{array}\]
To convert a mixed fraction into an improper fraction, we need to multiply the whole number with the denominator and add the numerator. The result obtained will be the numerator of the required improper fraction and its denominator will be the same as the denominator of the mixed fraction; that is \[a\dfrac{b}{c}\] is equivalent to the improper fraction \[\dfrac{{ac + b}}{c}\] .
Complete step-by-step answer:
We know the cost of 22.5 metres of cloth. We will use the unitary method to find out the cost of \[6\dfrac{3}{4}\] metres of cloth.
First, we will find the cost of 1 metre of cloth. As 22.5 metres of cloth costs Rs. 1350 dividing 1350 by 22.5 will give us the price of cloth per metre.
Cost of 1 metre cloth \[ = \dfrac{{1350}}{{22.5}}\]
We will remove the decimal in the denominator by multiplying the numerator by 10:
\[ \Rightarrow \] Cost of 1 metre cloth \[ = \dfrac{{13500}}{{225}}\]
Factorizing the numerator and denominator, we get
\[ \Rightarrow \] Cost of 1 metre cloth \[ = \dfrac{{60 \times 9 \times 25}}{{9 \times 25}}\]
We will cancel out the common factors and find the price of 1 metre of cloth. Therefore, we get
\[ \Rightarrow \] Cost of 1 metre cloth \[ = 60\]
The price of 1 metre of cloth is Rs. 60.
We need to find the price of \[6\dfrac{3}{4}\] metres of cloth. First, we will convert \[6\dfrac{3}{4}\] into an improper fraction. We will substitute 6 for \[a\] , 3 for \[b\] and 4 for \[c\] in the formula \[\dfrac{{ac + b}}{c}\] to convert a mixed fraction into an improper fraction:
\[\begin{array}{l}6\dfrac{3}{4} = \dfrac{{\left( {6 \times 4} \right) + 3}}{4}\\ \Rightarrow 6\dfrac{3}{4} = \dfrac{{27}}{4}\end{array}\]
We need to find the price of \[\dfrac{{27}}{4}\] metres of cloth. We will multiply price of 1 metre of cloth by \[\dfrac{{27}}{4}\] :
Cost of \[\dfrac{{27}}{4}\] metre cloth \[ = \dfrac{{27}}{4} \times 60\]
Simplifying the terms, we get
\[ \Rightarrow \]Cost of \[\dfrac{{27}}{4}\] metre cloth \[ = 27 \times 15 = 405\]
$\therefore $ The price of \[6\dfrac{3}{4}\] metres of cloth is 405 rupees.
Note: We can also find the price by using the formula \[\dfrac{{x \times p}}{l}\] where \[x\] is the length of cloth whose price has to be found and \[p\] is the price of cloth of length \[l\] :
\[\begin{array}{l}{\rm{price}} = \dfrac{{\dfrac{{27}}{4} \times 1350}}{{22.5}}\\ \Rightarrow {\rm{price}} = 405\end{array}\]
To convert a mixed fraction into an improper fraction, we need to multiply the whole number with the denominator and add the numerator. The result obtained will be the numerator of the required improper fraction and its denominator will be the same as the denominator of the mixed fraction; that is \[a\dfrac{b}{c}\] is equivalent to the improper fraction \[\dfrac{{ac + b}}{c}\] .
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
Convert 200 Million dollars in rupees class 7 maths CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

What was the main occupation of early Aryans of rig class 7 social science CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Welcome speech for Christmas day celebration class 7 english CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE


