
If \[{}^{20}{C_1} + \left( {{2^2}} \right){}^{20}{C_2} + \left( {{3^2}} \right){}^{20}{C_3} + \ldots + \left( {{{20}^2}} \right){}^{20}{C_{20}} = A\left( {{2^\beta }} \right)\], then the ordered pair \[\left( {A,\beta } \right)\] is equal to
A. \[\left( {420,18} \right)\]
B. \[\left( {380,19} \right)\]
C. \[\left( {380,18} \right)\]
D. \[\left( {420,19} \right)\]
Answer
587.4k+ views
Hint: In this problem, first we need to expand \[{\left( {1 + x} \right)^n}\] using the binomial expansion. Now differentiate the binomial expansion with respect to\[x\]. Next, multiply with \[x\] on both sides. Further, differentiate the obtained expression with respect to\[x\]. Substitute, \[x = 1\] and \[n=20\] in obtained expression.
Complete step-by-step solution:
The binomial expansion of the function \[{\left( {1 + x} \right)^n}\] is shown below.
\[{\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + \ldots + {}^n{C_n}{x^n}\]
Differentiate, the above binomial expansion with respect to\[x\].
$n{\left( {1 + x} \right)^{n - 1}} = 0 + {}^n{C_1}\left( 1 \right) + {}^n{C_2}\left( {2x} \right) + \ldots + {}^n{C_n}\left( {n{x^{n - 1}}} \right) \\$
$\Rightarrow n{\left( {1 + x} \right)^{n - 1}} = {}^n{C_1} + {}^n{C_2}\left( {2x} \right) + \ldots + {}^n{C_n}\left( {n{x^{n - 1}}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( 1 \right) \\ $
Multiply with \[x\] on both sides of the equation (1).
$ nx{\left( {1 + x} \right)^{n - 1}} = {}^n{C_1}x + {}^n{C_2}\left( {2x} \right)\left( x \right) + \ldots + {}^n{C_n}\left( {n{x^{n - 1}}} \right)\left( x \right) \\$
$\Rightarrow nx{\left( {1 + x} \right)^{n - 1}} = {}^n{C_1}x + {}^n{C_2}\left( {2{x^2}} \right) + \ldots + {}^n{C_n}\left( {n{x^n}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( 2 \right) \\ $
Further, differentiate equation (2) with respect to \[x\] as shown below.
$ n\left[ {{{\left( {1 + x} \right)}^{n - 1}} + \left( {n - 1} \right)x{{\left( {1 + x} \right)}^{n - 2}}} \right] = {}^n{C_1}\left( 1 \right) + {}^n{C_2}\left( {2 \cdot 2x} \right) + \ldots + {}^n{C_n}\left( {n \cdot n{x^{n - 1}}} \right) \\$
$\Rightarrow n\left[ {{{\left( {1 + x} \right)}^{n - 1}} + \left( {n - 1} \right)x{{\left( {1 + x} \right)}^{n - 2}}} \right] = {}^n{C_1}\left( 1 \right) + {}^n{C_2}\left( {{2^2}x} \right) + \ldots + {}^n{C_n}\left( {{n^2}{x^{n - 1}}} \right) $
Substitute, 1 for \[x\] and 20 for \[n\] in above expression.
$ 20\left[ {{{\left( {1 + 1} \right)}^{20 - 1}} + \left( {20 - 1} \right)\left( 1 \right){{\left( {1 + 1} \right)}^{20 - 2}}} \right] = {}^{20}{C_1} + {}^{20}{C_2}\left( {{2^2}\left( 1 \right)} \right) + \ldots + {}^{20}{C_{20}}\left( {{{20}^2}{{\left( 1 \right)}^{20 - 1}}} \right) \\$
$\Rightarrow 20\left[ {{{\left( 2 \right)}^{19}} + 19{{\left( 2 \right)}^{18}}} \right] = {}^{20}{C_1} + \left( {{2^2}} \right){}^{20}{C_2} + \ldots + \left( {{{20}^2}} \right){}^{20}{C_{20}} \\$
$\Rightarrow 20 \cdot {2^{18}}\left[ {2 + 19} \right] = {}^{20}{C_1} + \left( {{2^2}} \right){}^{20}{C_2} + \ldots + \left( {{{20}^2}} \right){}^{20}{C_{20}} \\$
$\Rightarrow 420\left( {{2^{18}}} \right) = {}^{20}{C_1} + \left( {{2^2}} \right){}^{20}{C_2} + \ldots + \left( {{{20}^2}} \right){}^{20}{C_{20}} $
Now, compare \[420\left( {{2^{18}}} \right)\] with \[A\left( {{2^\beta }} \right)\] to obtain the value of \[A\] and\[\beta\].
$ A = 420 \\$
$ \Rightarrow \beta = 18 $
Thus, the ordered pair \[\left( {A,\beta } \right)\] is equal to\[\left( {420,18} \right)\], hence, option (A) is correct answer.
Note: Binomial expansion is expansion of the powers of binomials or sum of two terms with the help of the combinations. In this problem, after obtaining the second derivative of the function \[{\left( {1 + x} \right)^n}\] we need to substitute 1 for x to obtain the value of given ordered pair.
Complete step-by-step solution:
The binomial expansion of the function \[{\left( {1 + x} \right)^n}\] is shown below.
\[{\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + \ldots + {}^n{C_n}{x^n}\]
Differentiate, the above binomial expansion with respect to\[x\].
$n{\left( {1 + x} \right)^{n - 1}} = 0 + {}^n{C_1}\left( 1 \right) + {}^n{C_2}\left( {2x} \right) + \ldots + {}^n{C_n}\left( {n{x^{n - 1}}} \right) \\$
$\Rightarrow n{\left( {1 + x} \right)^{n - 1}} = {}^n{C_1} + {}^n{C_2}\left( {2x} \right) + \ldots + {}^n{C_n}\left( {n{x^{n - 1}}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( 1 \right) \\ $
Multiply with \[x\] on both sides of the equation (1).
$ nx{\left( {1 + x} \right)^{n - 1}} = {}^n{C_1}x + {}^n{C_2}\left( {2x} \right)\left( x \right) + \ldots + {}^n{C_n}\left( {n{x^{n - 1}}} \right)\left( x \right) \\$
$\Rightarrow nx{\left( {1 + x} \right)^{n - 1}} = {}^n{C_1}x + {}^n{C_2}\left( {2{x^2}} \right) + \ldots + {}^n{C_n}\left( {n{x^n}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( 2 \right) \\ $
Further, differentiate equation (2) with respect to \[x\] as shown below.
$ n\left[ {{{\left( {1 + x} \right)}^{n - 1}} + \left( {n - 1} \right)x{{\left( {1 + x} \right)}^{n - 2}}} \right] = {}^n{C_1}\left( 1 \right) + {}^n{C_2}\left( {2 \cdot 2x} \right) + \ldots + {}^n{C_n}\left( {n \cdot n{x^{n - 1}}} \right) \\$
$\Rightarrow n\left[ {{{\left( {1 + x} \right)}^{n - 1}} + \left( {n - 1} \right)x{{\left( {1 + x} \right)}^{n - 2}}} \right] = {}^n{C_1}\left( 1 \right) + {}^n{C_2}\left( {{2^2}x} \right) + \ldots + {}^n{C_n}\left( {{n^2}{x^{n - 1}}} \right) $
Substitute, 1 for \[x\] and 20 for \[n\] in above expression.
$ 20\left[ {{{\left( {1 + 1} \right)}^{20 - 1}} + \left( {20 - 1} \right)\left( 1 \right){{\left( {1 + 1} \right)}^{20 - 2}}} \right] = {}^{20}{C_1} + {}^{20}{C_2}\left( {{2^2}\left( 1 \right)} \right) + \ldots + {}^{20}{C_{20}}\left( {{{20}^2}{{\left( 1 \right)}^{20 - 1}}} \right) \\$
$\Rightarrow 20\left[ {{{\left( 2 \right)}^{19}} + 19{{\left( 2 \right)}^{18}}} \right] = {}^{20}{C_1} + \left( {{2^2}} \right){}^{20}{C_2} + \ldots + \left( {{{20}^2}} \right){}^{20}{C_{20}} \\$
$\Rightarrow 20 \cdot {2^{18}}\left[ {2 + 19} \right] = {}^{20}{C_1} + \left( {{2^2}} \right){}^{20}{C_2} + \ldots + \left( {{{20}^2}} \right){}^{20}{C_{20}} \\$
$\Rightarrow 420\left( {{2^{18}}} \right) = {}^{20}{C_1} + \left( {{2^2}} \right){}^{20}{C_2} + \ldots + \left( {{{20}^2}} \right){}^{20}{C_{20}} $
Now, compare \[420\left( {{2^{18}}} \right)\] with \[A\left( {{2^\beta }} \right)\] to obtain the value of \[A\] and\[\beta\].
$ A = 420 \\$
$ \Rightarrow \beta = 18 $
Thus, the ordered pair \[\left( {A,\beta } \right)\] is equal to\[\left( {420,18} \right)\], hence, option (A) is correct answer.
Note: Binomial expansion is expansion of the powers of binomials or sum of two terms with the help of the combinations. In this problem, after obtaining the second derivative of the function \[{\left( {1 + x} \right)^n}\] we need to substitute 1 for x to obtain the value of given ordered pair.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

