
If 2010 is a root of \[{x^2}\left( {1 - pq} \right) - x\left( {{p^2} + {q^2}} \right) - \left( {1 + pq} \right) = 0\] and 2010 harmonic means are inserted between $p$ and $q$ the value of \[\dfrac{{h_1 - h_n}}{{pq\left( {p - q} \right)}}\] is
A) $\dfrac{1}{2}$
B) 4
C) 1
D) 2
Answer
512.7k+ views
Hint: First we will let the given root be equal to n then we will replace $x$ by $n$ in the given equation and get a certain value. Now since 2010 harmonic means are inserted between $p$ and $q$ we will assume them as $h_1,h_2,....h_n$ and then convert them in A.P. Then use certain formulas of A.P to get the desired value.
The identity used here is :
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Complete step by step solution:
The given equation is:-
\[{x^2}\left( {1 - pq} \right) - x\left( {{p^2} + {q^2}} \right) - \left( {1 + pq} \right) = 0\]
Let the given root to be $n$
Therefore,
\[n = 2010\]
Now since n is a root of given equation therefore replacing $x$ by $n$ in the given equation we get:
\[{n^2}\left( {1 - pq} \right) - n\left( {{p^2} + {q^2}} \right) - \left( {1 + pq} \right) = 0\]
Solving it further we get:
\[
\Rightarrow {n^2} - {n^2}pq - n{p^2} - n{q^2} - 1 - pq = 0 \\
\Rightarrow {n^2} - 1 = pq\left( {{n^2} + 1} \right) + n\left( {{p^2} + {q^2}} \right).................\left( 1 \right) \\
\]
Now since 2010 harmonic means are inserted between p and q therefore let the harmonic means be:
\[h_1,h_2,...........h_n\]
Hence the resulting harmonic series is:
\[p,h_1,h_2,...........h_n,q\]
Now converting this series into A.P. we get:-
\[ \Rightarrow \dfrac{1}{p},\dfrac{1}{{h_1}},\dfrac{1}{{h_2}},...........\dfrac{1}{{h_n}},\dfrac{1}{q}\]
Now as we know that the formula for last term of an A.P is :-
\[Tn = a + \left( {N - 1} \right)d\]
Applying this formula for above A.P we get:
Here, \[N = n + 2\] hence
\[
\Rightarrow \dfrac{1}{q} = \dfrac{1}{p} + \left( {n + 2 - 1} \right)d \\
\Rightarrow \dfrac{1}{q} = \dfrac{1}{p} + \left( {n + 1} \right)d \\
\]
Solving for the value of d we get:-
\[
\Rightarrow \left( {n + 1} \right)d = \dfrac{1}{q} - \dfrac{1}{p} \\
\Rightarrow \left( {n + 1} \right)d = \dfrac{{p - q}}{{pq}} \\
\Rightarrow d = \dfrac{{p - q}}{{pq\left( {n + 1} \right)}} \\
\]
Now since is the second term of the above A.P therefore,
\[
\Rightarrow \dfrac{1}{{h_1}} = \dfrac{1}{p} + \left( {2 - 1} \right)d \\
\Rightarrow \dfrac{1}{{h_1}} = \dfrac{1}{p} + d \\
\]
Putting the value of d we get:-
\[
\Rightarrow \dfrac{1}{{h_1}} = \dfrac{1}{p} + \dfrac{{p - q}}{{pq\left( {n + 1} \right)}} \\
\Rightarrow \dfrac{1}{{h_1}} = \dfrac{{q\left( {n + 1} \right) + p - q}}{{pq\left( {n + 1} \right)}} \\
\Rightarrow \dfrac{1}{{h_1}} = \dfrac{{qn + p}}{{pq\left( {n + 1} \right)}} \\
\Rightarrow h_1 = \dfrac{{pq\left( {n + 1} \right)}}{{qn + p}} \\
\]
Also, since \[\dfrac{1}{{h_n}}\] is the second last term of the above A.P therefore,
\[\Rightarrow \dfrac{1}{{h_n}} = \dfrac{1}{q} - d\]
Putting the value of d we get:-
\[
\Rightarrow \dfrac{1}{{h_n}} = \dfrac{1}{q} - \dfrac{{p - q}}{{pq\left( {n + 1} \right)}} \\
\Rightarrow \dfrac{1}{{h_n}} = \dfrac{{p\left( {n + 1} \right) - p + q}}{{pq\left( {n + 1} \right)}} \\
\Rightarrow \dfrac{1}{{h_n}} = \dfrac{{pn + q}}{{pq\left( {n + 1} \right)}} \\
\Rightarrow h_n = \dfrac{{pq\left( {n + 1} \right)}}{{pn + q}} \\
\]
Now evaluating the value of \[h_1 - h_n\] we get:-
\[
\Rightarrow h_1 - h_n = \dfrac{{pq\left( {n + 1} \right)}}{{qn + p}} - \dfrac{{pq\left( {n + 1} \right)}}{{pn + q}} \\
\Rightarrow h_1 - h_n = \dfrac{{pq\left( {n + 1} \right)\left( {pn + q - qn - p} \right)}}{{\left( {qn + p} \right)\left( {pn + q} \right)}} \\
\Rightarrow h_1 - h_n = \dfrac{{pq\left( {n + 1} \right)\left( {n\left( {p - q} \right) - 1\left( {p - q} \right)} \right)}}{{\left( {qn + p} \right)\left( {pn + q} \right)}} \\
\Rightarrow h_1 - h_n = \dfrac{{pq\left( {n + 1} \right)\left( {n - 1} \right)\left( {p - q} \right)}}{{{n^2}pq + n{q^2} + n{p^2} + pq}} \\
\]
As we know that:
\[\Rightarrow {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Therefore applying this formula we get:
\[\Rightarrow h_1 - h_n = \dfrac{{pq\left( {{n^2} - 1} \right)\left( {p - q} \right)}}{{({n^2} + 1)pq + n({q^2} + {p^2})}}\]
Now putting the value of \[\left( {{n^2} - 1} \right)\] from equation 1 we get:-
\[\Rightarrow h_1 - h_n = \dfrac{{pq\left[ {pq\left( {{n^2} + 1} \right) + n\left( {{p^2} + {q^2}} \right)} \right]\left( {p - q} \right)}}{{({n^2} + 1)pq + n({q^2} + {p^2})}}\]
Now evaluating the value of \[\dfrac{{h_1 - h_n}}{{pq\left( {p - q} \right)}}\] we get:-
\[
\Rightarrow \dfrac{{h_1 - h_n}}{{pq\left( {p - q} \right)}} = \dfrac{{pq\left[ {pq\left( {{n^2} + 1} \right) + n\left( {{p^2} + {q^2}} \right)} \right]\left( {p - q} \right)}}{{({n^2} + 1)pq + n({q^2} + {p^2})pq\left( {p - q} \right)}} \\
\Rightarrow \dfrac{{h_1 - h_n}}{{pq\left( {p - q} \right)}} = \dfrac{{\left[ {pq\left( {{n^2} + 1} \right) + n\left( {{p^2} + {q^2}} \right)} \right]}}{{({n^2} + 1)pq + n({q^2} + {p^2})}} \\
\Rightarrow \dfrac{{h_1 - h_n}}{{pq\left( {p - q} \right)}} = 1 \\
\]
$\therefore$ Hence the option C is correct.
Note:
Harmonic terms are the reciprocal of the terms that are in A.P.
Also, we do not have to use the exact value of the root of the given equation to get the desired answer.
The nth term of an A.P. is given by:
\[Tn = a + \left( {N - 1} \right)d\] where N is the number of terms of A.P.
The identity used here is :
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Complete step by step solution:
The given equation is:-
\[{x^2}\left( {1 - pq} \right) - x\left( {{p^2} + {q^2}} \right) - \left( {1 + pq} \right) = 0\]
Let the given root to be $n$
Therefore,
\[n = 2010\]
Now since n is a root of given equation therefore replacing $x$ by $n$ in the given equation we get:
\[{n^2}\left( {1 - pq} \right) - n\left( {{p^2} + {q^2}} \right) - \left( {1 + pq} \right) = 0\]
Solving it further we get:
\[
\Rightarrow {n^2} - {n^2}pq - n{p^2} - n{q^2} - 1 - pq = 0 \\
\Rightarrow {n^2} - 1 = pq\left( {{n^2} + 1} \right) + n\left( {{p^2} + {q^2}} \right).................\left( 1 \right) \\
\]
Now since 2010 harmonic means are inserted between p and q therefore let the harmonic means be:
\[h_1,h_2,...........h_n\]
Hence the resulting harmonic series is:
\[p,h_1,h_2,...........h_n,q\]
Now converting this series into A.P. we get:-
\[ \Rightarrow \dfrac{1}{p},\dfrac{1}{{h_1}},\dfrac{1}{{h_2}},...........\dfrac{1}{{h_n}},\dfrac{1}{q}\]
Now as we know that the formula for last term of an A.P is :-
\[Tn = a + \left( {N - 1} \right)d\]
Applying this formula for above A.P we get:
Here, \[N = n + 2\] hence
\[
\Rightarrow \dfrac{1}{q} = \dfrac{1}{p} + \left( {n + 2 - 1} \right)d \\
\Rightarrow \dfrac{1}{q} = \dfrac{1}{p} + \left( {n + 1} \right)d \\
\]
Solving for the value of d we get:-
\[
\Rightarrow \left( {n + 1} \right)d = \dfrac{1}{q} - \dfrac{1}{p} \\
\Rightarrow \left( {n + 1} \right)d = \dfrac{{p - q}}{{pq}} \\
\Rightarrow d = \dfrac{{p - q}}{{pq\left( {n + 1} \right)}} \\
\]
Now since is the second term of the above A.P therefore,
\[
\Rightarrow \dfrac{1}{{h_1}} = \dfrac{1}{p} + \left( {2 - 1} \right)d \\
\Rightarrow \dfrac{1}{{h_1}} = \dfrac{1}{p} + d \\
\]
Putting the value of d we get:-
\[
\Rightarrow \dfrac{1}{{h_1}} = \dfrac{1}{p} + \dfrac{{p - q}}{{pq\left( {n + 1} \right)}} \\
\Rightarrow \dfrac{1}{{h_1}} = \dfrac{{q\left( {n + 1} \right) + p - q}}{{pq\left( {n + 1} \right)}} \\
\Rightarrow \dfrac{1}{{h_1}} = \dfrac{{qn + p}}{{pq\left( {n + 1} \right)}} \\
\Rightarrow h_1 = \dfrac{{pq\left( {n + 1} \right)}}{{qn + p}} \\
\]
Also, since \[\dfrac{1}{{h_n}}\] is the second last term of the above A.P therefore,
\[\Rightarrow \dfrac{1}{{h_n}} = \dfrac{1}{q} - d\]
Putting the value of d we get:-
\[
\Rightarrow \dfrac{1}{{h_n}} = \dfrac{1}{q} - \dfrac{{p - q}}{{pq\left( {n + 1} \right)}} \\
\Rightarrow \dfrac{1}{{h_n}} = \dfrac{{p\left( {n + 1} \right) - p + q}}{{pq\left( {n + 1} \right)}} \\
\Rightarrow \dfrac{1}{{h_n}} = \dfrac{{pn + q}}{{pq\left( {n + 1} \right)}} \\
\Rightarrow h_n = \dfrac{{pq\left( {n + 1} \right)}}{{pn + q}} \\
\]
Now evaluating the value of \[h_1 - h_n\] we get:-
\[
\Rightarrow h_1 - h_n = \dfrac{{pq\left( {n + 1} \right)}}{{qn + p}} - \dfrac{{pq\left( {n + 1} \right)}}{{pn + q}} \\
\Rightarrow h_1 - h_n = \dfrac{{pq\left( {n + 1} \right)\left( {pn + q - qn - p} \right)}}{{\left( {qn + p} \right)\left( {pn + q} \right)}} \\
\Rightarrow h_1 - h_n = \dfrac{{pq\left( {n + 1} \right)\left( {n\left( {p - q} \right) - 1\left( {p - q} \right)} \right)}}{{\left( {qn + p} \right)\left( {pn + q} \right)}} \\
\Rightarrow h_1 - h_n = \dfrac{{pq\left( {n + 1} \right)\left( {n - 1} \right)\left( {p - q} \right)}}{{{n^2}pq + n{q^2} + n{p^2} + pq}} \\
\]
As we know that:
\[\Rightarrow {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Therefore applying this formula we get:
\[\Rightarrow h_1 - h_n = \dfrac{{pq\left( {{n^2} - 1} \right)\left( {p - q} \right)}}{{({n^2} + 1)pq + n({q^2} + {p^2})}}\]
Now putting the value of \[\left( {{n^2} - 1} \right)\] from equation 1 we get:-
\[\Rightarrow h_1 - h_n = \dfrac{{pq\left[ {pq\left( {{n^2} + 1} \right) + n\left( {{p^2} + {q^2}} \right)} \right]\left( {p - q} \right)}}{{({n^2} + 1)pq + n({q^2} + {p^2})}}\]
Now evaluating the value of \[\dfrac{{h_1 - h_n}}{{pq\left( {p - q} \right)}}\] we get:-
\[
\Rightarrow \dfrac{{h_1 - h_n}}{{pq\left( {p - q} \right)}} = \dfrac{{pq\left[ {pq\left( {{n^2} + 1} \right) + n\left( {{p^2} + {q^2}} \right)} \right]\left( {p - q} \right)}}{{({n^2} + 1)pq + n({q^2} + {p^2})pq\left( {p - q} \right)}} \\
\Rightarrow \dfrac{{h_1 - h_n}}{{pq\left( {p - q} \right)}} = \dfrac{{\left[ {pq\left( {{n^2} + 1} \right) + n\left( {{p^2} + {q^2}} \right)} \right]}}{{({n^2} + 1)pq + n({q^2} + {p^2})}} \\
\Rightarrow \dfrac{{h_1 - h_n}}{{pq\left( {p - q} \right)}} = 1 \\
\]
$\therefore$ Hence the option C is correct.
Note:
Harmonic terms are the reciprocal of the terms that are in A.P.
Also, we do not have to use the exact value of the root of the given equation to get the desired answer.
The nth term of an A.P. is given by:
\[Tn = a + \left( {N - 1} \right)d\] where N is the number of terms of A.P.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
