
If \[{}^{18}{C_{15}} + 2\left( {{}^{18}{C_{16}}} \right) + {}^{17}{C_{16}} + 1 = {}^n{C_3}\], then \[n\] is equal to
A. 19
B. 20
C. 18
D. 24
Answer
578.1k+ views
Hint: In this question, we will proceed by grouping the terms common wherever we can use the formula in combinations to simply the value for the further steps. Use the same method until it gets simplified to the required value.
Complete step-by-step answer:
Given that \[{}^{18}{C_{15}} + 2\left( {{}^{18}{C_{16}}} \right) + {}^{17}{C_{16}} + 1 = {}^n{C_3}\]
Which can be rewrite as
\[ \Rightarrow {}^{18}{C_{15}} + {}^{18}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3}\]
By using the formula, \[{}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}\] we get
\[
\Rightarrow \left( {{}^{18}{C_{15}} + {}^{18}{C_{16}}} \right) + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3} \\
\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\
\]
We know that \[{}^{17}{C_{17}} = 1\]. So, replacing 1 by \[{}^{17}{C_{17}}\] we get
\[ \Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + {}^{17}{C_{17}} = {}^n{C_3}\]
Again, using the formula \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r+1}}\] we get
\[
\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + \left( {{}^{17}{C_{16}} + {}^{17}{C_{17}}} \right) = {}^n{C_3} \\
\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{18}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r+!}}} \right] \\
\]
By using the formula, \[{}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}\] we get
\[
\Rightarrow {}^{19}{C_{16}} + \left( {{}^{18}{C_{16}} + {}^{18}{C_{17}}} \right) = {}^n{C_3} \\
\Rightarrow {}^{19}{C_{16}} + {}^{19}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\
\Rightarrow {}^{20}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\
\Rightarrow {}^{20}{C_3} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_r} = {}^n{C_{n - r}}} \right] \\
\]
We know that if \[{}^n{C_r} = {}^s{C_r}\] then \[n = s\]. So, we have
\[\therefore n = 20\]
Thus, the correct option is B. 20
Note: Here we have used the formula of combinations as follows:
1. \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_r}\]
2. If \[{}^n{C_r} = {}^s{C_r}\] then \[n = s\]
3. \[{}^n{C_r} = {}^n{C_{n - r}}\]
Complete step-by-step answer:
Given that \[{}^{18}{C_{15}} + 2\left( {{}^{18}{C_{16}}} \right) + {}^{17}{C_{16}} + 1 = {}^n{C_3}\]
Which can be rewrite as
\[ \Rightarrow {}^{18}{C_{15}} + {}^{18}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3}\]
By using the formula, \[{}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}\] we get
\[
\Rightarrow \left( {{}^{18}{C_{15}} + {}^{18}{C_{16}}} \right) + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3} \\
\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\
\]
We know that \[{}^{17}{C_{17}} = 1\]. So, replacing 1 by \[{}^{17}{C_{17}}\] we get
\[ \Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + {}^{17}{C_{17}} = {}^n{C_3}\]
Again, using the formula \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r+1}}\] we get
\[
\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + \left( {{}^{17}{C_{16}} + {}^{17}{C_{17}}} \right) = {}^n{C_3} \\
\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{18}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r+!}}} \right] \\
\]
By using the formula, \[{}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}\] we get
\[
\Rightarrow {}^{19}{C_{16}} + \left( {{}^{18}{C_{16}} + {}^{18}{C_{17}}} \right) = {}^n{C_3} \\
\Rightarrow {}^{19}{C_{16}} + {}^{19}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\
\Rightarrow {}^{20}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\
\Rightarrow {}^{20}{C_3} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_r} = {}^n{C_{n - r}}} \right] \\
\]
We know that if \[{}^n{C_r} = {}^s{C_r}\] then \[n = s\]. So, we have
\[\therefore n = 20\]
Thus, the correct option is B. 20
Note: Here we have used the formula of combinations as follows:
1. \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_r}\]
2. If \[{}^n{C_r} = {}^s{C_r}\] then \[n = s\]
3. \[{}^n{C_r} = {}^n{C_{n - r}}\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

