
If \[{}^{18}{C_{15}} + 2\left( {{}^{18}{C_{16}}} \right) + {}^{17}{C_{16}} + 1 = {}^n{C_3}\], then \[n\] is equal to
A. 19
B. 20
C. 18
D. 24
Answer
591.9k+ views
Hint: In this question, we will proceed by grouping the terms common wherever we can use the formula in combinations to simply the value for the further steps. Use the same method until it gets simplified to the required value.
Complete step-by-step answer:
Given that \[{}^{18}{C_{15}} + 2\left( {{}^{18}{C_{16}}} \right) + {}^{17}{C_{16}} + 1 = {}^n{C_3}\]
Which can be rewrite as
\[ \Rightarrow {}^{18}{C_{15}} + {}^{18}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3}\]
By using the formula, \[{}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}\] we get
\[
\Rightarrow \left( {{}^{18}{C_{15}} + {}^{18}{C_{16}}} \right) + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3} \\
\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\
\]
We know that \[{}^{17}{C_{17}} = 1\]. So, replacing 1 by \[{}^{17}{C_{17}}\] we get
\[ \Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + {}^{17}{C_{17}} = {}^n{C_3}\]
Again, using the formula \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r+1}}\] we get
\[
\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + \left( {{}^{17}{C_{16}} + {}^{17}{C_{17}}} \right) = {}^n{C_3} \\
\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{18}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r+!}}} \right] \\
\]
By using the formula, \[{}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}\] we get
\[
\Rightarrow {}^{19}{C_{16}} + \left( {{}^{18}{C_{16}} + {}^{18}{C_{17}}} \right) = {}^n{C_3} \\
\Rightarrow {}^{19}{C_{16}} + {}^{19}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\
\Rightarrow {}^{20}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\
\Rightarrow {}^{20}{C_3} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_r} = {}^n{C_{n - r}}} \right] \\
\]
We know that if \[{}^n{C_r} = {}^s{C_r}\] then \[n = s\]. So, we have
\[\therefore n = 20\]
Thus, the correct option is B. 20
Note: Here we have used the formula of combinations as follows:
1. \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_r}\]
2. If \[{}^n{C_r} = {}^s{C_r}\] then \[n = s\]
3. \[{}^n{C_r} = {}^n{C_{n - r}}\]
Complete step-by-step answer:
Given that \[{}^{18}{C_{15}} + 2\left( {{}^{18}{C_{16}}} \right) + {}^{17}{C_{16}} + 1 = {}^n{C_3}\]
Which can be rewrite as
\[ \Rightarrow {}^{18}{C_{15}} + {}^{18}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3}\]
By using the formula, \[{}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}\] we get
\[
\Rightarrow \left( {{}^{18}{C_{15}} + {}^{18}{C_{16}}} \right) + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3} \\
\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\
\]
We know that \[{}^{17}{C_{17}} = 1\]. So, replacing 1 by \[{}^{17}{C_{17}}\] we get
\[ \Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + {}^{17}{C_{17}} = {}^n{C_3}\]
Again, using the formula \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r+1}}\] we get
\[
\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + \left( {{}^{17}{C_{16}} + {}^{17}{C_{17}}} \right) = {}^n{C_3} \\
\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{18}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r+!}}} \right] \\
\]
By using the formula, \[{}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}\] we get
\[
\Rightarrow {}^{19}{C_{16}} + \left( {{}^{18}{C_{16}} + {}^{18}{C_{17}}} \right) = {}^n{C_3} \\
\Rightarrow {}^{19}{C_{16}} + {}^{19}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\
\Rightarrow {}^{20}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\
\Rightarrow {}^{20}{C_3} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_r} = {}^n{C_{n - r}}} \right] \\
\]
We know that if \[{}^n{C_r} = {}^s{C_r}\] then \[n = s\]. So, we have
\[\therefore n = 20\]
Thus, the correct option is B. 20
Note: Here we have used the formula of combinations as follows:
1. \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_r}\]
2. If \[{}^n{C_r} = {}^s{C_r}\] then \[n = s\]
3. \[{}^n{C_r} = {}^n{C_{n - r}}\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

