
If \[{}^{18}{C_{15}} + 2\left( {{}^{18}{C_{16}}} \right) + {}^{17}{C_{16}} + 1 = {}^n{C_3}\], then \[n\] is equal to
A. 19
B. 20
C. 18
D. 24
Answer
513k+ views
Hint: In this question, we will proceed by grouping the terms common wherever we can use the formula in combinations to simply the value for the further steps. Use the same method until it gets simplified to the required value.
Complete step-by-step answer:
Given that \[{}^{18}{C_{15}} + 2\left( {{}^{18}{C_{16}}} \right) + {}^{17}{C_{16}} + 1 = {}^n{C_3}\]
Which can be rewrite as
\[ \Rightarrow {}^{18}{C_{15}} + {}^{18}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3}\]
By using the formula, \[{}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}\] we get
\[
\Rightarrow \left( {{}^{18}{C_{15}} + {}^{18}{C_{16}}} \right) + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3} \\
\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\
\]
We know that \[{}^{17}{C_{17}} = 1\]. So, replacing 1 by \[{}^{17}{C_{17}}\] we get
\[ \Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + {}^{17}{C_{17}} = {}^n{C_3}\]
Again, using the formula \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r+1}}\] we get
\[
\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + \left( {{}^{17}{C_{16}} + {}^{17}{C_{17}}} \right) = {}^n{C_3} \\
\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{18}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r+!}}} \right] \\
\]
By using the formula, \[{}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}\] we get
\[
\Rightarrow {}^{19}{C_{16}} + \left( {{}^{18}{C_{16}} + {}^{18}{C_{17}}} \right) = {}^n{C_3} \\
\Rightarrow {}^{19}{C_{16}} + {}^{19}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\
\Rightarrow {}^{20}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\
\Rightarrow {}^{20}{C_3} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_r} = {}^n{C_{n - r}}} \right] \\
\]
We know that if \[{}^n{C_r} = {}^s{C_r}\] then \[n = s\]. So, we have
\[\therefore n = 20\]
Thus, the correct option is B. 20
Note: Here we have used the formula of combinations as follows:
1. \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_r}\]
2. If \[{}^n{C_r} = {}^s{C_r}\] then \[n = s\]
3. \[{}^n{C_r} = {}^n{C_{n - r}}\]
Complete step-by-step answer:
Given that \[{}^{18}{C_{15}} + 2\left( {{}^{18}{C_{16}}} \right) + {}^{17}{C_{16}} + 1 = {}^n{C_3}\]
Which can be rewrite as
\[ \Rightarrow {}^{18}{C_{15}} + {}^{18}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3}\]
By using the formula, \[{}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}\] we get
\[
\Rightarrow \left( {{}^{18}{C_{15}} + {}^{18}{C_{16}}} \right) + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3} \\
\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + 1 = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\
\]
We know that \[{}^{17}{C_{17}} = 1\]. So, replacing 1 by \[{}^{17}{C_{17}}\] we get
\[ \Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{17}{C_{16}} + {}^{17}{C_{17}} = {}^n{C_3}\]
Again, using the formula \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r+1}}\] we get
\[
\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + \left( {{}^{17}{C_{16}} + {}^{17}{C_{17}}} \right) = {}^n{C_3} \\
\Rightarrow {}^{19}{C_{16}} + {}^{18}{C_{16}} + {}^{18}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r+!}}} \right] \\
\]
By using the formula, \[{}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}\] we get
\[
\Rightarrow {}^{19}{C_{16}} + \left( {{}^{18}{C_{16}} + {}^{18}{C_{17}}} \right) = {}^n{C_3} \\
\Rightarrow {}^{19}{C_{16}} + {}^{19}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\
\Rightarrow {}^{20}{C_{17}} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_{r + 1}} + {}^n{C_r} = {}^{n + 1}{C_{r+1}}} \right] \\
\Rightarrow {}^{20}{C_3} = {}^n{C_3}{\text{ }}\left[ {\because {}^n{C_r} = {}^n{C_{n - r}}} \right] \\
\]
We know that if \[{}^n{C_r} = {}^s{C_r}\] then \[n = s\]. So, we have
\[\therefore n = 20\]
Thus, the correct option is B. 20
Note: Here we have used the formula of combinations as follows:
1. \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_r}\]
2. If \[{}^n{C_r} = {}^s{C_r}\] then \[n = s\]
3. \[{}^n{C_r} = {}^n{C_{n - r}}\]
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE

Give two reasons to justify a Water at room temperature class 11 chemistry CBSE
