
If 1 mole of a monatomic gas ($\gamma = 5/3$) is mixed with 1 mole of a diatomic gas ($\gamma = 7/5$), the value of $\gamma $ for the mixture is:
A. 1.40
B. 1.50
C. 1.53
D. 3.07
Answer
603.9k+ views
Hint – We know that for monatomic gas, ${C_V} = \dfrac{3}{2}RT$ and ${C_P} = \dfrac{5}{2}RT$ and for diatomic gas, ${C_V} = \dfrac{5}{2}RT$ and ${C_P} = \dfrac{7}{2}RT$.
Complete step-by-step answer:
Formula used –
1) ${C_V} = \dfrac{{{n_1}{C_{{V_1}}} + {n_2}{C_{{V_2}}}}}{{{n_1} + {n_2}}}$
2) ${C_P} = \dfrac{{{n_1}{C_{{P_1}}} + {n_2}{C_{{P_2}}}}}{{{n_1} + {n_2}}}$
3) $\gamma = \dfrac{{{C_P}}}{{{C_V}}}$
Given, for monatomic gas is $\gamma = 5/3$
For diatomic gas, $\gamma = 7/5$
We know that, for monatomic gas, ${C_V} = \dfrac{3}{2}RT$ and ${C_P} = \dfrac{5}{2}RT$ and for diatomic gas, ${C_V} = \dfrac{5}{2}RT$ and ${C_P} = \dfrac{7}{2}RT$
No. Monatomic gas moles=1
No. diatomic gas moles = 1
For mixture, ${C_V} = \dfrac{{{n_1}{C_{{V_1}}} + {n_2}{C_{{V_2}}}}}{{{n_1} + {n_2}}}$
\[{C_V} = \dfrac{{\dfrac{3}{2}RT + \dfrac{5}{2}RT}}{2} = \dfrac{8}{4}RT = 2RT\]
Similarly, \[{C_{P}} = \dfrac{{\dfrac{5}{2}RT + \dfrac{7}{2}RT}}{2} = \dfrac{{12}}{4}RT = 3RT\]
$\gamma = \dfrac{{{C_P}}}{{{C_V}}}$\[ = \dfrac{{3RT}}{{2RT}} = 1.5\]
Hence, the correct answer is 1.5.
Therefore, the correct option is B.
Note – In these types of questions, we should remember the basic concepts and the formulae associated with monatomic, diatomic and triatomic gases and formula for mixture of gases i.e.
${C_P} = \dfrac{{{n_1}{C_{{P_1}}} + {n_2}{C_{{P_2}}}}}{{{n_1} + {n_2}}}$ and ${C_V} = \dfrac{{{n_1}{C_{{V_1}}} + {n_2}{C_{{V_2}}}}}{{{n_1} + {n_2}}}$.
Complete step-by-step answer:
Formula used –
1) ${C_V} = \dfrac{{{n_1}{C_{{V_1}}} + {n_2}{C_{{V_2}}}}}{{{n_1} + {n_2}}}$
2) ${C_P} = \dfrac{{{n_1}{C_{{P_1}}} + {n_2}{C_{{P_2}}}}}{{{n_1} + {n_2}}}$
3) $\gamma = \dfrac{{{C_P}}}{{{C_V}}}$
Given, for monatomic gas is $\gamma = 5/3$
For diatomic gas, $\gamma = 7/5$
We know that, for monatomic gas, ${C_V} = \dfrac{3}{2}RT$ and ${C_P} = \dfrac{5}{2}RT$ and for diatomic gas, ${C_V} = \dfrac{5}{2}RT$ and ${C_P} = \dfrac{7}{2}RT$
No. Monatomic gas moles=1
No. diatomic gas moles = 1
For mixture, ${C_V} = \dfrac{{{n_1}{C_{{V_1}}} + {n_2}{C_{{V_2}}}}}{{{n_1} + {n_2}}}$
\[{C_V} = \dfrac{{\dfrac{3}{2}RT + \dfrac{5}{2}RT}}{2} = \dfrac{8}{4}RT = 2RT\]
Similarly, \[{C_{P}} = \dfrac{{\dfrac{5}{2}RT + \dfrac{7}{2}RT}}{2} = \dfrac{{12}}{4}RT = 3RT\]
$\gamma = \dfrac{{{C_P}}}{{{C_V}}}$\[ = \dfrac{{3RT}}{{2RT}} = 1.5\]
Hence, the correct answer is 1.5.
Therefore, the correct option is B.
Note – In these types of questions, we should remember the basic concepts and the formulae associated with monatomic, diatomic and triatomic gases and formula for mixture of gases i.e.
${C_P} = \dfrac{{{n_1}{C_{{P_1}}} + {n_2}{C_{{P_2}}}}}{{{n_1} + {n_2}}}$ and ${C_V} = \dfrac{{{n_1}{C_{{V_1}}} + {n_2}{C_{{V_2}}}}}{{{n_1} + {n_2}}}$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

