
If 1 mole of a monatomic gas ($\gamma = 5/3$) is mixed with 1 mole of a diatomic gas ($\gamma = 7/5$), the value of $\gamma $ for the mixture is:
A. 1.40
B. 1.50
C. 1.53
D. 3.07
Answer
511.5k+ views
Hint – We know that for monatomic gas, ${C_V} = \dfrac{3}{2}RT$ and ${C_P} = \dfrac{5}{2}RT$ and for diatomic gas, ${C_V} = \dfrac{5}{2}RT$ and ${C_P} = \dfrac{7}{2}RT$.
Complete step-by-step answer:
Formula used –
1) ${C_V} = \dfrac{{{n_1}{C_{{V_1}}} + {n_2}{C_{{V_2}}}}}{{{n_1} + {n_2}}}$
2) ${C_P} = \dfrac{{{n_1}{C_{{P_1}}} + {n_2}{C_{{P_2}}}}}{{{n_1} + {n_2}}}$
3) $\gamma = \dfrac{{{C_P}}}{{{C_V}}}$
Given, for monatomic gas is $\gamma = 5/3$
For diatomic gas, $\gamma = 7/5$
We know that, for monatomic gas, ${C_V} = \dfrac{3}{2}RT$ and ${C_P} = \dfrac{5}{2}RT$ and for diatomic gas, ${C_V} = \dfrac{5}{2}RT$ and ${C_P} = \dfrac{7}{2}RT$
No. Monatomic gas moles=1
No. diatomic gas moles = 1
For mixture, ${C_V} = \dfrac{{{n_1}{C_{{V_1}}} + {n_2}{C_{{V_2}}}}}{{{n_1} + {n_2}}}$
\[{C_V} = \dfrac{{\dfrac{3}{2}RT + \dfrac{5}{2}RT}}{2} = \dfrac{8}{4}RT = 2RT\]
Similarly, \[{C_{P}} = \dfrac{{\dfrac{5}{2}RT + \dfrac{7}{2}RT}}{2} = \dfrac{{12}}{4}RT = 3RT\]
$\gamma = \dfrac{{{C_P}}}{{{C_V}}}$\[ = \dfrac{{3RT}}{{2RT}} = 1.5\]
Hence, the correct answer is 1.5.
Therefore, the correct option is B.
Note – In these types of questions, we should remember the basic concepts and the formulae associated with monatomic, diatomic and triatomic gases and formula for mixture of gases i.e.
${C_P} = \dfrac{{{n_1}{C_{{P_1}}} + {n_2}{C_{{P_2}}}}}{{{n_1} + {n_2}}}$ and ${C_V} = \dfrac{{{n_1}{C_{{V_1}}} + {n_2}{C_{{V_2}}}}}{{{n_1} + {n_2}}}$.
Complete step-by-step answer:
Formula used –
1) ${C_V} = \dfrac{{{n_1}{C_{{V_1}}} + {n_2}{C_{{V_2}}}}}{{{n_1} + {n_2}}}$
2) ${C_P} = \dfrac{{{n_1}{C_{{P_1}}} + {n_2}{C_{{P_2}}}}}{{{n_1} + {n_2}}}$
3) $\gamma = \dfrac{{{C_P}}}{{{C_V}}}$
Given, for monatomic gas is $\gamma = 5/3$
For diatomic gas, $\gamma = 7/5$
We know that, for monatomic gas, ${C_V} = \dfrac{3}{2}RT$ and ${C_P} = \dfrac{5}{2}RT$ and for diatomic gas, ${C_V} = \dfrac{5}{2}RT$ and ${C_P} = \dfrac{7}{2}RT$
No. Monatomic gas moles=1
No. diatomic gas moles = 1
For mixture, ${C_V} = \dfrac{{{n_1}{C_{{V_1}}} + {n_2}{C_{{V_2}}}}}{{{n_1} + {n_2}}}$
\[{C_V} = \dfrac{{\dfrac{3}{2}RT + \dfrac{5}{2}RT}}{2} = \dfrac{8}{4}RT = 2RT\]
Similarly, \[{C_{P}} = \dfrac{{\dfrac{5}{2}RT + \dfrac{7}{2}RT}}{2} = \dfrac{{12}}{4}RT = 3RT\]
$\gamma = \dfrac{{{C_P}}}{{{C_V}}}$\[ = \dfrac{{3RT}}{{2RT}} = 1.5\]
Hence, the correct answer is 1.5.
Therefore, the correct option is B.
Note – In these types of questions, we should remember the basic concepts and the formulae associated with monatomic, diatomic and triatomic gases and formula for mixture of gases i.e.
${C_P} = \dfrac{{{n_1}{C_{{P_1}}} + {n_2}{C_{{P_2}}}}}{{{n_1} + {n_2}}}$ and ${C_V} = \dfrac{{{n_1}{C_{{V_1}}} + {n_2}{C_{{V_2}}}}}{{{n_1} + {n_2}}}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
