
If \[0\le x\le 2\pi \], then the real values of x, which satisfy the equation \[\cos x+\cos 2x+\cos 3x+\cos 4x=0\].
(a) 3
(b) 5
(c) 7
(d) 9
Answer
576k+ views
Hint: Group \[\cos x\] with \[\cos 3x\] and \[\cos 2x\] with \[\cos 4x\] and use the formula: - \[\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\] to simplify the expression. Take the common terms together and apply the same formula to write all the cosine functions as the product. Substitute each term equal to 0 and use the formula: - If \[\cos a=0,a=\left( 2n+1 \right)\dfrac{\pi }{2},n\in I\], to write the general solution. Substitute the value of ‘n’ so that x lies between 0 and \[2\pi \] and count the total values of x obtained to get the answer.
Complete step by step answer:
Here, we have been provided with the equation: -
\[\Rightarrow \cos x+\cos 2x+\cos 3x+\cos 4x=0\]
Grouping \[\cos x\] with \[\cos 3x\] and \[\cos 2x\] with \[\cos 4x\], we get,
\[\Rightarrow \left( \cos x+\cos 3x \right)+\left( \cos 4x+\cos 2x \right)=0\]
Applying the identity: - \[\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\], we get,
\[\begin{align}
& \Rightarrow 2\cos \left( \dfrac{3x+x}{2} \right)\cos \left( \dfrac{3x-x}{2} \right)+2\cos \left( \dfrac{4x+2x}{2} \right)\cos \left( \dfrac{4x-2x}{2} \right)=0 \\
& \Rightarrow 2\cos 2x\cos x+2\cos 3x\cos x=0 \\
& \Rightarrow 2\cos x\left( \cos 2x+\cos 3x \right)=0 \\
\end{align}\]
Again, applying the identity: - \[\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\], we get,
\[\Rightarrow 2\cos x\times 2\cos \left( \dfrac{3x+2x}{2} \right)\cos \left( \dfrac{3x-2x}{2} \right)=0\]
\[\begin{align}
& \Rightarrow 8\cos x\cos \dfrac{5x}{2}\cos \dfrac{x}{2}=0 \\
& \Rightarrow \cos \dfrac{x}{2}\cos x\cos \dfrac{5x}{2}=0 \\
\end{align}\]
Substituting each term equal to 0, we get,
1. \[\cos \dfrac{x}{2}=0\]
We know that the general solution of the trigonometric equation: - \[\cos a=0\] is given as: - \[a=\left( 2n+1 \right)\dfrac{\pi }{2},n\in I\].
\[\begin{align}
& \Rightarrow \cos \dfrac{x}{2}=0 \\
& \Rightarrow \dfrac{x}{2}=\left( 2n+1 \right)\dfrac{\pi }{2} \\
& \Rightarrow x=\left( 2n+1 \right)\pi \\
\end{align}\]
Now, we have been given that \[0\le x\le 2\pi \]. Therefore, we have,
For \[n=0\Rightarrow x=\pi \].
Hence, \[x=\pi \].
2. \[\cos x=0\]
\[\Rightarrow x=\left( 2n+1 \right)\dfrac{\pi }{2}\]
To satisfy the condition \[0\le x\le 2\pi \], we have,
For n = 0 \[\Rightarrow x=\dfrac{\pi }{2}\]
For n = 1 \[\Rightarrow x=\dfrac{3\pi }{2}\]
Hence, \[x=\dfrac{\pi }{2},\dfrac{3\pi }{2}\].
3. \[\cos \dfrac{5x}{2}=0\]
\[\begin{align}
& \Rightarrow \dfrac{5x}{2}=\left( 2n+1 \right)\dfrac{\pi }{2} \\
& \Rightarrow x=\left( 2n+1 \right)\dfrac{\pi }{5} \\
\end{align}\]
To satisfy the condition, \[0\le x\le 2\pi \], we have,
For n = 0 \[\Rightarrow x=\dfrac{\pi }{5}\]
For n = 1 \[\Rightarrow x=\dfrac{3\pi }{5}\]
For n = 2 \[\Rightarrow x=\dfrac{5\pi }{5}=\pi \]
For n = 3 \[\Rightarrow x=\dfrac{7\pi }{5}\]
For n = 4 \[\Rightarrow x=\dfrac{9\pi }{5}\]
Hence, \[x=\dfrac{\pi }{5},\dfrac{3\pi }{5},\pi ,\dfrac{7\pi }{5},\dfrac{9\pi }{5}\]
Clearly, we can see that \[x=\pi \] is common in case (1) and case (3), so we will count it only once. Therefore, on counting all the different values of x obtained, we get,
Total number of values of x = 7.
So, the correct answer is “Option c”.
Note: One may note that we have grouped \[\cos x\] with \[\cos 3x\] and \[\cos 2x\] with \[\cos 4x\]. There is not any reason for that, you can group any two terms together because at last you will get the same expression. Remember that we have to substitute each trigonometric function equal to 0 and find the value of x. Before counting all the values of x obtained, check if any value is coming more than one, if yes then count it only once.
Complete step by step answer:
Here, we have been provided with the equation: -
\[\Rightarrow \cos x+\cos 2x+\cos 3x+\cos 4x=0\]
Grouping \[\cos x\] with \[\cos 3x\] and \[\cos 2x\] with \[\cos 4x\], we get,
\[\Rightarrow \left( \cos x+\cos 3x \right)+\left( \cos 4x+\cos 2x \right)=0\]
Applying the identity: - \[\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\], we get,
\[\begin{align}
& \Rightarrow 2\cos \left( \dfrac{3x+x}{2} \right)\cos \left( \dfrac{3x-x}{2} \right)+2\cos \left( \dfrac{4x+2x}{2} \right)\cos \left( \dfrac{4x-2x}{2} \right)=0 \\
& \Rightarrow 2\cos 2x\cos x+2\cos 3x\cos x=0 \\
& \Rightarrow 2\cos x\left( \cos 2x+\cos 3x \right)=0 \\
\end{align}\]
Again, applying the identity: - \[\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\], we get,
\[\Rightarrow 2\cos x\times 2\cos \left( \dfrac{3x+2x}{2} \right)\cos \left( \dfrac{3x-2x}{2} \right)=0\]
\[\begin{align}
& \Rightarrow 8\cos x\cos \dfrac{5x}{2}\cos \dfrac{x}{2}=0 \\
& \Rightarrow \cos \dfrac{x}{2}\cos x\cos \dfrac{5x}{2}=0 \\
\end{align}\]
Substituting each term equal to 0, we get,
1. \[\cos \dfrac{x}{2}=0\]
We know that the general solution of the trigonometric equation: - \[\cos a=0\] is given as: - \[a=\left( 2n+1 \right)\dfrac{\pi }{2},n\in I\].
\[\begin{align}
& \Rightarrow \cos \dfrac{x}{2}=0 \\
& \Rightarrow \dfrac{x}{2}=\left( 2n+1 \right)\dfrac{\pi }{2} \\
& \Rightarrow x=\left( 2n+1 \right)\pi \\
\end{align}\]
Now, we have been given that \[0\le x\le 2\pi \]. Therefore, we have,
For \[n=0\Rightarrow x=\pi \].
Hence, \[x=\pi \].
2. \[\cos x=0\]
\[\Rightarrow x=\left( 2n+1 \right)\dfrac{\pi }{2}\]
To satisfy the condition \[0\le x\le 2\pi \], we have,
For n = 0 \[\Rightarrow x=\dfrac{\pi }{2}\]
For n = 1 \[\Rightarrow x=\dfrac{3\pi }{2}\]
Hence, \[x=\dfrac{\pi }{2},\dfrac{3\pi }{2}\].
3. \[\cos \dfrac{5x}{2}=0\]
\[\begin{align}
& \Rightarrow \dfrac{5x}{2}=\left( 2n+1 \right)\dfrac{\pi }{2} \\
& \Rightarrow x=\left( 2n+1 \right)\dfrac{\pi }{5} \\
\end{align}\]
To satisfy the condition, \[0\le x\le 2\pi \], we have,
For n = 0 \[\Rightarrow x=\dfrac{\pi }{5}\]
For n = 1 \[\Rightarrow x=\dfrac{3\pi }{5}\]
For n = 2 \[\Rightarrow x=\dfrac{5\pi }{5}=\pi \]
For n = 3 \[\Rightarrow x=\dfrac{7\pi }{5}\]
For n = 4 \[\Rightarrow x=\dfrac{9\pi }{5}\]
Hence, \[x=\dfrac{\pi }{5},\dfrac{3\pi }{5},\pi ,\dfrac{7\pi }{5},\dfrac{9\pi }{5}\]
Clearly, we can see that \[x=\pi \] is common in case (1) and case (3), so we will count it only once. Therefore, on counting all the different values of x obtained, we get,
Total number of values of x = 7.
So, the correct answer is “Option c”.
Note: One may note that we have grouped \[\cos x\] with \[\cos 3x\] and \[\cos 2x\] with \[\cos 4x\]. There is not any reason for that, you can group any two terms together because at last you will get the same expression. Remember that we have to substitute each trigonometric function equal to 0 and find the value of x. Before counting all the values of x obtained, check if any value is coming more than one, if yes then count it only once.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

