
If \[0 < \alpha , \beta < 4 \pi ,cos \left( { \alpha + \beta } \right) = 54,sin \left( { \alpha - \beta } \right) = 135, \] then \[tan2 \alpha \] =
A. \[ \dfrac{{33}}{{56}} \]
B. \[ \dfrac{{56}}{{33}} \]
C. $ \dfrac{{16}}{{33}} $
D.None
Answer
569.4k+ views
Hint: To answer the value of \[tan2 \alpha \] we need to find the value of $ \sin 2 \alpha $ and $ \cos 2 \alpha $ such that we can find the value of \[tan2 \alpha \] . To find the value of $ \sin 2 \alpha $ and $ \cos 2 \alpha $ we need to find the value of $ \sin ( \alpha + \beta ) $ and $ \cos ( \alpha - \beta ) $ . Once we find the value of these values use angle sum formula and find the required answer.
Complete step-by-step answer:
Given
\[cos \left( { \alpha + \beta } \right) = 54,{ \text{ }}sin \left( { \alpha - \beta } \right) = 135 \]
Now aplly the formula that the sum of squares of sin and cos is always equal to 1 for the same value of angle.
So we get,
\[\Rightarrow sin \left( { \alpha + \beta } \right) = \sqrt {1 - co{s^2} \left( { \alpha + \beta } \right)} = \sqrt {1 - {{ \left( { \dfrac{4}{5}} \right)}^2}} = \dfrac{3}{5} \]
Similarly,
\[\Rightarrow cos \left( { \alpha - \beta } \right) = \sqrt {1 - si{n^2} \left( { \alpha - \beta } \right)} = \sqrt {1 - {{ \left( { \dfrac{{5}}{{13}}} \right)}^2}} = \dfrac{{12}}{{13}} \]
Now applying the formula of $ \sin 2 \alpha $
We get,
\[\Rightarrow sin \left( {2 \alpha } \right) = sin \left( { \alpha + \beta + \alpha - \beta } \right) = sin \left( { \alpha + \beta } \right)cos \left( { \alpha - \beta } \right) + sin \left( { \alpha - \beta } \right)cos \left( { \alpha + \beta } \right) \]
On putting the given value we get,
\[ = \dfrac{3}{5} \times \dfrac{{12}}{{13}} + \dfrac{5}{{13}} \times \dfrac{4}{5} = \dfrac{{56}}{{65}} \]
Similarly the value of $ \cos 2 \alpha $
We get,
\[\Rightarrow cos \left( {2 \alpha } \right) = cos \left( { \alpha + \beta + \alpha - \beta } \right) = cos \left( { \alpha + \beta } \right)cos \left( { \alpha - \beta } \right) - sin \left( { \alpha - \beta } \right)sin \left( { \alpha - \beta } \right) \]
On putting the given values we get,
\[ = \dfrac{{4 \times 12}}{{5 \times 13}} - \dfrac{{5 \times 13}}{{13 \times 5}} = \dfrac{{33}}{{65}} \]
Now applying the formula \[tan2 \alpha \] in terms of sin and cos we get
\[tan2 \alpha = \dfrac{{sin2 \alpha }}{{cos2 \alpha }} \]
On putting the above values of $ \sin 2 \alpha $ and $ \cos 2 \alpha $
We get,
\[ = \dfrac{{56}}{{65}} \times \dfrac{{65}}{{33}} = \dfrac{{56}}{{33}} \]
Hence the value of \[tan2 \alpha \] is \[ \dfrac{{56}}{{33}} \]
So, the correct answer is “Option B”.
Note: In this question students should know the adjustment of angle like \[cos \left( {2 \alpha } \right) = cos \left( { \alpha + \beta + \alpha - \beta } \right) \] otherwise this problem can not be solved easily. Might have to face difficulty as there seems to be no other easy way to solve this.
Complete step-by-step answer:
Given
\[cos \left( { \alpha + \beta } \right) = 54,{ \text{ }}sin \left( { \alpha - \beta } \right) = 135 \]
Now aplly the formula that the sum of squares of sin and cos is always equal to 1 for the same value of angle.
So we get,
\[\Rightarrow sin \left( { \alpha + \beta } \right) = \sqrt {1 - co{s^2} \left( { \alpha + \beta } \right)} = \sqrt {1 - {{ \left( { \dfrac{4}{5}} \right)}^2}} = \dfrac{3}{5} \]
Similarly,
\[\Rightarrow cos \left( { \alpha - \beta } \right) = \sqrt {1 - si{n^2} \left( { \alpha - \beta } \right)} = \sqrt {1 - {{ \left( { \dfrac{{5}}{{13}}} \right)}^2}} = \dfrac{{12}}{{13}} \]
Now applying the formula of $ \sin 2 \alpha $
We get,
\[\Rightarrow sin \left( {2 \alpha } \right) = sin \left( { \alpha + \beta + \alpha - \beta } \right) = sin \left( { \alpha + \beta } \right)cos \left( { \alpha - \beta } \right) + sin \left( { \alpha - \beta } \right)cos \left( { \alpha + \beta } \right) \]
On putting the given value we get,
\[ = \dfrac{3}{5} \times \dfrac{{12}}{{13}} + \dfrac{5}{{13}} \times \dfrac{4}{5} = \dfrac{{56}}{{65}} \]
Similarly the value of $ \cos 2 \alpha $
We get,
\[\Rightarrow cos \left( {2 \alpha } \right) = cos \left( { \alpha + \beta + \alpha - \beta } \right) = cos \left( { \alpha + \beta } \right)cos \left( { \alpha - \beta } \right) - sin \left( { \alpha - \beta } \right)sin \left( { \alpha - \beta } \right) \]
On putting the given values we get,
\[ = \dfrac{{4 \times 12}}{{5 \times 13}} - \dfrac{{5 \times 13}}{{13 \times 5}} = \dfrac{{33}}{{65}} \]
Now applying the formula \[tan2 \alpha \] in terms of sin and cos we get
\[tan2 \alpha = \dfrac{{sin2 \alpha }}{{cos2 \alpha }} \]
On putting the above values of $ \sin 2 \alpha $ and $ \cos 2 \alpha $
We get,
\[ = \dfrac{{56}}{{65}} \times \dfrac{{65}}{{33}} = \dfrac{{56}}{{33}} \]
Hence the value of \[tan2 \alpha \] is \[ \dfrac{{56}}{{33}} \]
So, the correct answer is “Option B”.
Note: In this question students should know the adjustment of angle like \[cos \left( {2 \alpha } \right) = cos \left( { \alpha + \beta + \alpha - \beta } \right) \] otherwise this problem can not be solved easily. Might have to face difficulty as there seems to be no other easy way to solve this.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

