
If \[0 < \alpha , \beta < 4 \pi ,cos \left( { \alpha + \beta } \right) = 54,sin \left( { \alpha - \beta } \right) = 135, \] then \[tan2 \alpha \] =
A. \[ \dfrac{{33}}{{56}} \]
B. \[ \dfrac{{56}}{{33}} \]
C. $ \dfrac{{16}}{{33}} $
D.None
Answer
552.9k+ views
Hint: To answer the value of \[tan2 \alpha \] we need to find the value of $ \sin 2 \alpha $ and $ \cos 2 \alpha $ such that we can find the value of \[tan2 \alpha \] . To find the value of $ \sin 2 \alpha $ and $ \cos 2 \alpha $ we need to find the value of $ \sin ( \alpha + \beta ) $ and $ \cos ( \alpha - \beta ) $ . Once we find the value of these values use angle sum formula and find the required answer.
Complete step-by-step answer:
Given
\[cos \left( { \alpha + \beta } \right) = 54,{ \text{ }}sin \left( { \alpha - \beta } \right) = 135 \]
Now aplly the formula that the sum of squares of sin and cos is always equal to 1 for the same value of angle.
So we get,
\[\Rightarrow sin \left( { \alpha + \beta } \right) = \sqrt {1 - co{s^2} \left( { \alpha + \beta } \right)} = \sqrt {1 - {{ \left( { \dfrac{4}{5}} \right)}^2}} = \dfrac{3}{5} \]
Similarly,
\[\Rightarrow cos \left( { \alpha - \beta } \right) = \sqrt {1 - si{n^2} \left( { \alpha - \beta } \right)} = \sqrt {1 - {{ \left( { \dfrac{{5}}{{13}}} \right)}^2}} = \dfrac{{12}}{{13}} \]
Now applying the formula of $ \sin 2 \alpha $
We get,
\[\Rightarrow sin \left( {2 \alpha } \right) = sin \left( { \alpha + \beta + \alpha - \beta } \right) = sin \left( { \alpha + \beta } \right)cos \left( { \alpha - \beta } \right) + sin \left( { \alpha - \beta } \right)cos \left( { \alpha + \beta } \right) \]
On putting the given value we get,
\[ = \dfrac{3}{5} \times \dfrac{{12}}{{13}} + \dfrac{5}{{13}} \times \dfrac{4}{5} = \dfrac{{56}}{{65}} \]
Similarly the value of $ \cos 2 \alpha $
We get,
\[\Rightarrow cos \left( {2 \alpha } \right) = cos \left( { \alpha + \beta + \alpha - \beta } \right) = cos \left( { \alpha + \beta } \right)cos \left( { \alpha - \beta } \right) - sin \left( { \alpha - \beta } \right)sin \left( { \alpha - \beta } \right) \]
On putting the given values we get,
\[ = \dfrac{{4 \times 12}}{{5 \times 13}} - \dfrac{{5 \times 13}}{{13 \times 5}} = \dfrac{{33}}{{65}} \]
Now applying the formula \[tan2 \alpha \] in terms of sin and cos we get
\[tan2 \alpha = \dfrac{{sin2 \alpha }}{{cos2 \alpha }} \]
On putting the above values of $ \sin 2 \alpha $ and $ \cos 2 \alpha $
We get,
\[ = \dfrac{{56}}{{65}} \times \dfrac{{65}}{{33}} = \dfrac{{56}}{{33}} \]
Hence the value of \[tan2 \alpha \] is \[ \dfrac{{56}}{{33}} \]
So, the correct answer is “Option B”.
Note: In this question students should know the adjustment of angle like \[cos \left( {2 \alpha } \right) = cos \left( { \alpha + \beta + \alpha - \beta } \right) \] otherwise this problem can not be solved easily. Might have to face difficulty as there seems to be no other easy way to solve this.
Complete step-by-step answer:
Given
\[cos \left( { \alpha + \beta } \right) = 54,{ \text{ }}sin \left( { \alpha - \beta } \right) = 135 \]
Now aplly the formula that the sum of squares of sin and cos is always equal to 1 for the same value of angle.
So we get,
\[\Rightarrow sin \left( { \alpha + \beta } \right) = \sqrt {1 - co{s^2} \left( { \alpha + \beta } \right)} = \sqrt {1 - {{ \left( { \dfrac{4}{5}} \right)}^2}} = \dfrac{3}{5} \]
Similarly,
\[\Rightarrow cos \left( { \alpha - \beta } \right) = \sqrt {1 - si{n^2} \left( { \alpha - \beta } \right)} = \sqrt {1 - {{ \left( { \dfrac{{5}}{{13}}} \right)}^2}} = \dfrac{{12}}{{13}} \]
Now applying the formula of $ \sin 2 \alpha $
We get,
\[\Rightarrow sin \left( {2 \alpha } \right) = sin \left( { \alpha + \beta + \alpha - \beta } \right) = sin \left( { \alpha + \beta } \right)cos \left( { \alpha - \beta } \right) + sin \left( { \alpha - \beta } \right)cos \left( { \alpha + \beta } \right) \]
On putting the given value we get,
\[ = \dfrac{3}{5} \times \dfrac{{12}}{{13}} + \dfrac{5}{{13}} \times \dfrac{4}{5} = \dfrac{{56}}{{65}} \]
Similarly the value of $ \cos 2 \alpha $
We get,
\[\Rightarrow cos \left( {2 \alpha } \right) = cos \left( { \alpha + \beta + \alpha - \beta } \right) = cos \left( { \alpha + \beta } \right)cos \left( { \alpha - \beta } \right) - sin \left( { \alpha - \beta } \right)sin \left( { \alpha - \beta } \right) \]
On putting the given values we get,
\[ = \dfrac{{4 \times 12}}{{5 \times 13}} - \dfrac{{5 \times 13}}{{13 \times 5}} = \dfrac{{33}}{{65}} \]
Now applying the formula \[tan2 \alpha \] in terms of sin and cos we get
\[tan2 \alpha = \dfrac{{sin2 \alpha }}{{cos2 \alpha }} \]
On putting the above values of $ \sin 2 \alpha $ and $ \cos 2 \alpha $
We get,
\[ = \dfrac{{56}}{{65}} \times \dfrac{{65}}{{33}} = \dfrac{{56}}{{33}} \]
Hence the value of \[tan2 \alpha \] is \[ \dfrac{{56}}{{33}} \]
So, the correct answer is “Option B”.
Note: In this question students should know the adjustment of angle like \[cos \left( {2 \alpha } \right) = cos \left( { \alpha + \beta + \alpha - \beta } \right) \] otherwise this problem can not be solved easily. Might have to face difficulty as there seems to be no other easy way to solve this.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

