
If $0 = 9,{\rm{\;b}} = 4,{\rm{\;c}} = 8$ then the distance between the middle point of BC & the foot of the perpendicular from A is
(A) 2
(B)1
(C) $\dfrac{8}{3}$
(D) $\dfrac{7}{3}$
Answer
570.6k+ views
Hint:
We have to use the relation between the angle of the triangle and its sides. We know such a formula which is the cos rule in trigonometry.
$\cos {\rm{c}} = \dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}$ to find d. then find DE which is the distance between the middle point of BC & the foot of the perpendicular from A.
Complete step by step solution:
We have a triangle ABC where D is the mid-point of line BC & E is the point for the foot of a perpendicular from A.
Now, DC CD CE
$\dfrac{1}{2}{\rm{a}} - {\rm{b}}\cos {\rm{c}}$$ = \dfrac{{\rm{a}}}{2} - {\rm{b}}\left( {\dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}} \right)$by using formula
$\cos {\rm{c}} = \dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}$
$ = \dfrac{{\rm{a}}}{2} - \dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{a}}}}$
$ = \dfrac{{{{\rm{a}}^2} - {{\rm{a}}^2} - {{\rm{b}}^2} + {{\rm{c}}^2}}}{{2{\rm{a}}}}$
$\therefore {\rm{DE}} = \dfrac{{{{\rm{c}}^2} - {{\rm{b}}^2}}}{{2{\rm{a}}}}$
Now, we know that $0 = 9,{\rm{\;b}} = 4,{\rm{\;c}} = 8$
$\therefore {\rm{DE}} = \dfrac{{{8^2} - {4^2}}}{{2 \times 9}} = \dfrac{{64 - 16}}{{18}}$
$ = \dfrac{{48}}{{13}} = \dfrac{8}{3}$
Note:
Length of AD is found using Stewart theorem.
i.e. ${\rm{A}}{{\rm{D}}^2} = \dfrac{{2{{\rm{b}}^2} + 2{{\rm{c}}^2} - {{\rm{a}}^2}}}{4}$
Where AD is the median. Once AD is found, DE can be easily determined.
We have to use the relation between the angle of the triangle and its sides. We know such a formula which is the cos rule in trigonometry.
$\cos {\rm{c}} = \dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}$ to find d. then find DE which is the distance between the middle point of BC & the foot of the perpendicular from A.
Complete step by step solution:
We have a triangle ABC where D is the mid-point of line BC & E is the point for the foot of a perpendicular from A.
Now, DC CD CE
$\dfrac{1}{2}{\rm{a}} - {\rm{b}}\cos {\rm{c}}$$ = \dfrac{{\rm{a}}}{2} - {\rm{b}}\left( {\dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}} \right)$by using formula
$\cos {\rm{c}} = \dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}$
$ = \dfrac{{\rm{a}}}{2} - \dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{a}}}}$
$ = \dfrac{{{{\rm{a}}^2} - {{\rm{a}}^2} - {{\rm{b}}^2} + {{\rm{c}}^2}}}{{2{\rm{a}}}}$
$\therefore {\rm{DE}} = \dfrac{{{{\rm{c}}^2} - {{\rm{b}}^2}}}{{2{\rm{a}}}}$
Now, we know that $0 = 9,{\rm{\;b}} = 4,{\rm{\;c}} = 8$
$\therefore {\rm{DE}} = \dfrac{{{8^2} - {4^2}}}{{2 \times 9}} = \dfrac{{64 - 16}}{{18}}$
$ = \dfrac{{48}}{{13}} = \dfrac{8}{3}$
Note:
Length of AD is found using Stewart theorem.
i.e. ${\rm{A}}{{\rm{D}}^2} = \dfrac{{2{{\rm{b}}^2} + 2{{\rm{c}}^2} - {{\rm{a}}^2}}}{4}$
Where AD is the median. Once AD is found, DE can be easily determined.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

