
If $0 = 9,{\rm{\;b}} = 4,{\rm{\;c}} = 8$ then the distance between the middle point of BC & the foot of the perpendicular from A is
(A) 2
(B)1
(C) $\dfrac{8}{3}$
(D) $\dfrac{7}{3}$
Answer
485.1k+ views
Hint:
We have to use the relation between the angle of the triangle and its sides. We know such a formula which is the cos rule in trigonometry.
$\cos {\rm{c}} = \dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}$ to find d. then find DE which is the distance between the middle point of BC & the foot of the perpendicular from A.
Complete step by step solution:
We have a triangle ABC where D is the mid-point of line BC & E is the point for the foot of a perpendicular from A.
Now, DC CD CE
$\dfrac{1}{2}{\rm{a}} - {\rm{b}}\cos {\rm{c}}$$ = \dfrac{{\rm{a}}}{2} - {\rm{b}}\left( {\dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}} \right)$by using formula
$\cos {\rm{c}} = \dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}$
$ = \dfrac{{\rm{a}}}{2} - \dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{a}}}}$
$ = \dfrac{{{{\rm{a}}^2} - {{\rm{a}}^2} - {{\rm{b}}^2} + {{\rm{c}}^2}}}{{2{\rm{a}}}}$
$\therefore {\rm{DE}} = \dfrac{{{{\rm{c}}^2} - {{\rm{b}}^2}}}{{2{\rm{a}}}}$
Now, we know that $0 = 9,{\rm{\;b}} = 4,{\rm{\;c}} = 8$
$\therefore {\rm{DE}} = \dfrac{{{8^2} - {4^2}}}{{2 \times 9}} = \dfrac{{64 - 16}}{{18}}$
$ = \dfrac{{48}}{{13}} = \dfrac{8}{3}$
Note:
Length of AD is found using Stewart theorem.
i.e. ${\rm{A}}{{\rm{D}}^2} = \dfrac{{2{{\rm{b}}^2} + 2{{\rm{c}}^2} - {{\rm{a}}^2}}}{4}$
Where AD is the median. Once AD is found, DE can be easily determined.
We have to use the relation between the angle of the triangle and its sides. We know such a formula which is the cos rule in trigonometry.
$\cos {\rm{c}} = \dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}$ to find d. then find DE which is the distance between the middle point of BC & the foot of the perpendicular from A.
Complete step by step solution:
We have a triangle ABC where D is the mid-point of line BC & E is the point for the foot of a perpendicular from A.
Now, DC CD CE
$\dfrac{1}{2}{\rm{a}} - {\rm{b}}\cos {\rm{c}}$$ = \dfrac{{\rm{a}}}{2} - {\rm{b}}\left( {\dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}} \right)$by using formula
$\cos {\rm{c}} = \dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}$
$ = \dfrac{{\rm{a}}}{2} - \dfrac{{{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}}}{{2{\rm{a}}}}$
$ = \dfrac{{{{\rm{a}}^2} - {{\rm{a}}^2} - {{\rm{b}}^2} + {{\rm{c}}^2}}}{{2{\rm{a}}}}$
$\therefore {\rm{DE}} = \dfrac{{{{\rm{c}}^2} - {{\rm{b}}^2}}}{{2{\rm{a}}}}$
Now, we know that $0 = 9,{\rm{\;b}} = 4,{\rm{\;c}} = 8$
$\therefore {\rm{DE}} = \dfrac{{{8^2} - {4^2}}}{{2 \times 9}} = \dfrac{{64 - 16}}{{18}}$
$ = \dfrac{{48}}{{13}} = \dfrac{8}{3}$
Note:
Length of AD is found using Stewart theorem.
i.e. ${\rm{A}}{{\rm{D}}^2} = \dfrac{{2{{\rm{b}}^2} + 2{{\rm{c}}^2} - {{\rm{a}}^2}}}{4}$
Where AD is the median. Once AD is found, DE can be easily determined.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
