
Identify transformations of trigonometric expressions prove the following identities $\dfrac{{{{\sin }^2}2a + 4{{\sin }^4}a - 4{{\sin }^2}a{{\cos }^2}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}} = {\tan ^4}a$
Answer
507.6k+ views
Hint:In the given question the RHS is given in ${\tan ^4}a$ so we have to try to convert the LHS part into ${\tan ^4}a$ or $\dfrac{{{{\sin }^4}a}}{{{{\cos }^4}a}}$. For this apply $\sin 2a = 2\sin a\cos a$ or ${\sin ^2}2a = 4{\sin ^2}a{\cos ^2}a$ try to change $2a$ angles in $a$ . After that apply ${\sin ^2}a + {\cos ^2}a = 1$ to proceed the result .
Complete step-by-step answer:
As in the RHS it is given that ${\tan ^4}a$ so we have to try to convert the LHS part into ${\tan ^4}a$ or $\dfrac{{{{\sin }^4}a}}{{{{\cos }^4}a}}$ .
For this we have to apply trigonometric transformation in the LHS part .
From LHS
$\dfrac{{{{\sin }^2}2a + 4{{\sin }^4}a - 4{{\sin }^2}a{{\cos }^2}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}$
So we know that $\sin 2a = 2\sin a\cos a$ , apply this is in the numerator part , hence we get ,$\dfrac{{{{\left( {2\sin a\cos a} \right)}^2} + 4{{\sin }^4}a - 4{{\sin }^2}a{{\cos }^2}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}$
$\dfrac{{4{{\sin }^2}a{{\cos }^2}a + 4{{\sin }^4}a - 4{{\sin }^2}a{{\cos }^2}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}$
Now $4{\sin ^2}a{\cos ^2}a$ will cancel out ,
$\dfrac{{4{{\sin }^4}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}$
$\dfrac{{4{{\sin }^4}a}}{{4(1 - {{\sin }^2}a) - {{\sin }^2}2a}}$
Now in denominator , we know that ${\sin ^2}a + {\cos ^2}a = 1$ or ${\cos ^2}a = 1 - {\sin ^2}a$ apply this in the denominator
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a - {{\sin }^2}2a}}$
Now we know that $\sin 2a = 2\sin a\cos a$ and on squaring ${\sin ^2}2a = 4{\sin ^2}a{\cos ^2}a$
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a - 4{{\sin }^2}a{{\cos }^2}a}}$
Take $4{\cos ^2}a$ common in the denominator ,
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a(1 - {{\sin }^2}a)}}$
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a.{{\cos }^2}a}}$
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^4}a}} = {\tan ^4}a$
= RHS
Proved
Note:Students should remember trigonometric formulas, identities and transformation formulas for solving these types of problems.For these types of problems first we have to approach the solution by analysing the R.H.S of the given expression, Use the suitable identities , formula and simplify the L.H.S part to prove the given expression.
Complete step-by-step answer:
As in the RHS it is given that ${\tan ^4}a$ so we have to try to convert the LHS part into ${\tan ^4}a$ or $\dfrac{{{{\sin }^4}a}}{{{{\cos }^4}a}}$ .
For this we have to apply trigonometric transformation in the LHS part .
From LHS
$\dfrac{{{{\sin }^2}2a + 4{{\sin }^4}a - 4{{\sin }^2}a{{\cos }^2}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}$
So we know that $\sin 2a = 2\sin a\cos a$ , apply this is in the numerator part , hence we get ,$\dfrac{{{{\left( {2\sin a\cos a} \right)}^2} + 4{{\sin }^4}a - 4{{\sin }^2}a{{\cos }^2}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}$
$\dfrac{{4{{\sin }^2}a{{\cos }^2}a + 4{{\sin }^4}a - 4{{\sin }^2}a{{\cos }^2}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}$
Now $4{\sin ^2}a{\cos ^2}a$ will cancel out ,
$\dfrac{{4{{\sin }^4}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}$
$\dfrac{{4{{\sin }^4}a}}{{4(1 - {{\sin }^2}a) - {{\sin }^2}2a}}$
Now in denominator , we know that ${\sin ^2}a + {\cos ^2}a = 1$ or ${\cos ^2}a = 1 - {\sin ^2}a$ apply this in the denominator
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a - {{\sin }^2}2a}}$
Now we know that $\sin 2a = 2\sin a\cos a$ and on squaring ${\sin ^2}2a = 4{\sin ^2}a{\cos ^2}a$
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a - 4{{\sin }^2}a{{\cos }^2}a}}$
Take $4{\cos ^2}a$ common in the denominator ,
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a(1 - {{\sin }^2}a)}}$
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a.{{\cos }^2}a}}$
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^4}a}} = {\tan ^4}a$
= RHS
Proved
Note:Students should remember trigonometric formulas, identities and transformation formulas for solving these types of problems.For these types of problems first we have to approach the solution by analysing the R.H.S of the given expression, Use the suitable identities , formula and simplify the L.H.S part to prove the given expression.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the technique used to separate the components class 11 chemistry CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Give two reasons to justify a Water at room temperature class 11 chemistry CBSE
