
Identify transformations of trigonometric expressions prove the following identities $\dfrac{{{{\sin }^2}2a + 4{{\sin }^4}a - 4{{\sin }^2}a{{\cos }^2}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}} = {\tan ^4}a$
Answer
588.9k+ views
Hint:In the given question the RHS is given in ${\tan ^4}a$ so we have to try to convert the LHS part into ${\tan ^4}a$ or $\dfrac{{{{\sin }^4}a}}{{{{\cos }^4}a}}$. For this apply $\sin 2a = 2\sin a\cos a$ or ${\sin ^2}2a = 4{\sin ^2}a{\cos ^2}a$ try to change $2a$ angles in $a$ . After that apply ${\sin ^2}a + {\cos ^2}a = 1$ to proceed the result .
Complete step-by-step answer:
As in the RHS it is given that ${\tan ^4}a$ so we have to try to convert the LHS part into ${\tan ^4}a$ or $\dfrac{{{{\sin }^4}a}}{{{{\cos }^4}a}}$ .
For this we have to apply trigonometric transformation in the LHS part .
From LHS
$\dfrac{{{{\sin }^2}2a + 4{{\sin }^4}a - 4{{\sin }^2}a{{\cos }^2}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}$
So we know that $\sin 2a = 2\sin a\cos a$ , apply this is in the numerator part , hence we get ,$\dfrac{{{{\left( {2\sin a\cos a} \right)}^2} + 4{{\sin }^4}a - 4{{\sin }^2}a{{\cos }^2}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}$
$\dfrac{{4{{\sin }^2}a{{\cos }^2}a + 4{{\sin }^4}a - 4{{\sin }^2}a{{\cos }^2}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}$
Now $4{\sin ^2}a{\cos ^2}a$ will cancel out ,
$\dfrac{{4{{\sin }^4}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}$
$\dfrac{{4{{\sin }^4}a}}{{4(1 - {{\sin }^2}a) - {{\sin }^2}2a}}$
Now in denominator , we know that ${\sin ^2}a + {\cos ^2}a = 1$ or ${\cos ^2}a = 1 - {\sin ^2}a$ apply this in the denominator
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a - {{\sin }^2}2a}}$
Now we know that $\sin 2a = 2\sin a\cos a$ and on squaring ${\sin ^2}2a = 4{\sin ^2}a{\cos ^2}a$
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a - 4{{\sin }^2}a{{\cos }^2}a}}$
Take $4{\cos ^2}a$ common in the denominator ,
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a(1 - {{\sin }^2}a)}}$
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a.{{\cos }^2}a}}$
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^4}a}} = {\tan ^4}a$
= RHS
Proved
Note:Students should remember trigonometric formulas, identities and transformation formulas for solving these types of problems.For these types of problems first we have to approach the solution by analysing the R.H.S of the given expression, Use the suitable identities , formula and simplify the L.H.S part to prove the given expression.
Complete step-by-step answer:
As in the RHS it is given that ${\tan ^4}a$ so we have to try to convert the LHS part into ${\tan ^4}a$ or $\dfrac{{{{\sin }^4}a}}{{{{\cos }^4}a}}$ .
For this we have to apply trigonometric transformation in the LHS part .
From LHS
$\dfrac{{{{\sin }^2}2a + 4{{\sin }^4}a - 4{{\sin }^2}a{{\cos }^2}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}$
So we know that $\sin 2a = 2\sin a\cos a$ , apply this is in the numerator part , hence we get ,$\dfrac{{{{\left( {2\sin a\cos a} \right)}^2} + 4{{\sin }^4}a - 4{{\sin }^2}a{{\cos }^2}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}$
$\dfrac{{4{{\sin }^2}a{{\cos }^2}a + 4{{\sin }^4}a - 4{{\sin }^2}a{{\cos }^2}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}$
Now $4{\sin ^2}a{\cos ^2}a$ will cancel out ,
$\dfrac{{4{{\sin }^4}a}}{{4 - {{\sin }^2}2a - 4{{\sin }^2}a}}$
$\dfrac{{4{{\sin }^4}a}}{{4(1 - {{\sin }^2}a) - {{\sin }^2}2a}}$
Now in denominator , we know that ${\sin ^2}a + {\cos ^2}a = 1$ or ${\cos ^2}a = 1 - {\sin ^2}a$ apply this in the denominator
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a - {{\sin }^2}2a}}$
Now we know that $\sin 2a = 2\sin a\cos a$ and on squaring ${\sin ^2}2a = 4{\sin ^2}a{\cos ^2}a$
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a - 4{{\sin }^2}a{{\cos }^2}a}}$
Take $4{\cos ^2}a$ common in the denominator ,
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a(1 - {{\sin }^2}a)}}$
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^2}a.{{\cos }^2}a}}$
$\dfrac{{4{{\sin }^4}a}}{{4{{\cos }^4}a}} = {\tan ^4}a$
= RHS
Proved
Note:Students should remember trigonometric formulas, identities and transformation formulas for solving these types of problems.For these types of problems first we have to approach the solution by analysing the R.H.S of the given expression, Use the suitable identities , formula and simplify the L.H.S part to prove the given expression.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

