Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Identify the order in which the spin only magnetic moment (in BM) increases for the following four ions:
(I) $\text{F}{{\text{e}}^{+2}}$
(II) $\text{T}{{\text{i}}^{+2}}$
(III) $\text{C}{{\text{u}}^{+2}}$
(IV) ${{\text{V}}^{+2}}$
A. I, II, IV, III
B. IV, I, II, III
C. III, IV, I, II
D. III, II, IV, I

seo-qna
Last updated date: 23rd Apr 2024
Total views: 397.8k
Views today: 11.97k
Answer
VerifiedVerified
397.8k+ views
Hint: The spin magnetic moment can be found out by writing the correct electronic configuration of elements $\text{F}{{\text{e}}^{+2}}$, $\text{T}{{\text{i}}^{+2}}$, $\text{C}{{\text{u}}^{+2}}$, ${{\text{V}}^{+2}}$, $\text{Fe}$,$\text{Ti}$, $\text{Cu}$, V are d- block elements, after removing 2 electrons $\text{F}{{\text{e}}^{+2}}$, $\text{T}{{\text{i}}^{+2}}$, $\text{C}{{\text{u}}^{+2}}$, ${{\text{V}}^{+2}}$ will be formed. The spin magnetic moment is represented by $\sqrt{\text{n(n}+\text{2)}}$, where n is the number of unpaired electrons.

Complete answer:
(I) First, write the electronic configuration of $\text{Fe}$. (Atomic number is 26):
$\text{Fe}$: $1{{\text{s}}^{2}}2{{\text{s}}^{2}}2{{\text{p}}^{6}}3{{\text{s}}^{2}}3{{\text{p}}^{6}}4{{\text{s}}^{2}}3{{\text{d}}^{6}}$
Now, remove 2 electrons from$\text{Fe}$by which$\text{F}{{\text{e}}^{+2}}$ will be formed. Its electronic configuration will be
$\text{F}{{\text{e}}^{+2}}$: $1{{\text{s}}^{2}}2{{\text{s}}^{2}}2{{\text{p}}^{6}}3{{\text{s}}^{2}}3{{\text{p}}^{6}}4{{\text{s}}^{0}}3{{\text{d}}^{6}}$; 2 electrons will be removed from the outermost shell of $\text{Fe}$which is the 4th shell respectively.
The d- orbital configuration of $\text{F}{{\text{e}}^{+2}}$can be represented as: $\begin{matrix}
   \uparrow \downarrow & \uparrow & \uparrow & \uparrow & \uparrow \\
\end{matrix}$. Thus, the number of unpaired electrons are 4. So, the spin magnetic moment will be$\sqrt{4(4+2)}=\sqrt{4\times 6}$ , which is equal to$2\sqrt{6}$. (4.89 B.M.)

(II) First, write the electronic configuration of $\text{Ti}$. (Atomic number is 22):
$\text{Ti}$: $1{{\text{s}}^{2}}2{{\text{s}}^{2}}2{{\text{p}}^{6}}3{{\text{s}}^{2}}3{{\text{p}}^{6}}4{{\text{s}}^{2}}3{{\text{d}}^{2}}$
Now, remove 2 electrons from$\text{Ti}$ by which $\text{T}{{\text{i}}^{+2}}$ will be formed. Its electronic configuration will be
$\text{T}{{\text{i}}^{+2}}$: $1{{\text{s}}^{2}}2{{\text{s}}^{2}}2{{\text{p}}^{6}}3{{\text{s}}^{2}}3{{\text{p}}^{6}}4{{\text{s}}^{0}}3{{\text{d}}^{2}}$; 2 electrons will be removed from the outermost shell of $\text{Ti}$which is the 4th shell respectively.
The d- orbital configuration of $\text{T}{{\text{i}}^{+2}}$can be represented as: $\begin{matrix}
   \uparrow & \uparrow & {} & {} & {} \\
\end{matrix}$. Thus, the number of unpaired electrons are 2. So, the spin magnetic moment will be$\sqrt{2(2+2)}=\sqrt{4\times 2}$, is equal to $2\sqrt{2}$(2.82 B.M).

(III) First, write the electronic configuration of $\text{Cu}$. (Atomic number is 29):
$\text{Cu}$: $1{{\text{s}}^{2}}2{{\text{s}}^{2}}2{{\text{p}}^{6}}3{{\text{s}}^{2}}3{{\text{p}}^{6}}4{{\text{s}}^{1}}3{{\text{d}}^{10}}$
Now, after removing 2 electrons from $\text{Cu}$,$\text{C}{{\text{u}}^{+2}}$ will be formed. Its electronic configuration will be
$\text{C}{{\text{u}}^{+2}}$: $1{{\text{s}}^{2}}2{{\text{s}}^{2}}2{{\text{p}}^{6}}3{{\text{s}}^{2}}3{{\text{p}}^{6}}4{{\text{s}}^{0}}3{{\text{d}}^{9}}$; 2 electrons will be removed from the outermost shell of $\text{Cu}$which is the 4th shell respectively.
The d- orbital configuration of $\text{C}{{\text{u}}^{+2}}$can be represented as: $\begin{matrix}
   \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & \uparrow \downarrow & \uparrow \\
\end{matrix}$. Thus, the number of unpaired electrons is 1. So, the spin magnetic moment will be$\sqrt{1(1+2)}=\sqrt{1\times 3}$, is equal to $\sqrt{3}$(1.73 B.M).

(IV) First, write the electronic configuration of $\text{V}$. (Atomic number is 23):
$\text{V}$: $1{{\text{s}}^{2}}2{{\text{s}}^{2}}2{{\text{p}}^{6}}3{{\text{s}}^{2}}3{{\text{p}}^{6}}4{{\text{s}}^{2}}3{{\text{d}}^{3}}$
Now, after removing 2 electrons from$\text{V}$,${{\text{V}}^{+2}}$ will be formed. Its electronic configuration will be
${{\text{V}}^{+2}}$: $1{{\text{s}}^{2}}2{{\text{s}}^{2}}2{{\text{p}}^{6}}3{{\text{s}}^{2}}3{{\text{p}}^{6}}4{{\text{s}}^{0}}3{{\text{d}}^{3}}$; 2 electrons will be removed from the outermost shell of $\text{V}$which is the 4th shell respectively.
The d- orbital configuration of ${{\text{V}}^{+2}}$ can be represented as: $\begin{matrix}
   \uparrow & \uparrow & \uparrow & {} & {} \\
\end{matrix}$. Thus, the number of unpaired electrons are 3. So, the spin magnetic will be $\sqrt{\text{n(n}+\text{2)}}$, $\sqrt{3\times 5}$which is equal to $\sqrt{15}$ (3.87 B.M).
Thus, the increasing order of spin magnetic moment will be $\text{F}{{\text{e}}^{+2}}>{{\text{V}}^{+2}}>\text{T}{{\text{i}}^{+2}}>\text{C}{{\text{u}}^{+2}}$. So, the correct option is option‘d’ which is III, II, IV, I .
So, the correct answer is “Option D”.

Note: While writing the electronic configuration, the electrons to be removed from the outermost shell. Like, in ${{\text{V}}^{+2}}$ the electrons will be removed from the outer shell of $\text{V}$, which is the 4th shell ($4\text{s}$), not from ($3\text{d}$). It will be $1{{\text{s}}^{2}}2{{\text{s}}^{2}}2{{\text{p}}^{6}}3{{\text{s}}^{2}}3{{\text{p}}^{6}}4{{\text{s}}^{0}}3{{\text{d}}^{3}}$ not $1{{\text{s}}^{2}}2{{\text{s}}^{2}}2{{\text{p}}^{6}}3{{\text{s}}^{2}}3{{\text{p}}^{6}}4{{\text{s}}^{2}}3{{\text{d}}^{1}}$ while writing the configuration of ${{\text{V}}^{+2}}$.
Recently Updated Pages