
Identify the false statement
(a) $ \sim \left[ {p \vee \left( { \sim q} \right)} \right] \equiv \left( { \sim p} \right) \vee q$
(b) $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,\,{\text{is a tautology}}$
(c) $\left[ {p \wedge q} \right] \wedge \left( { \sim p} \right)\,\,{\text{is a contradiction}}$
(d) $ \sim \left[ {p \vee q} \right] \equiv \left( { \sim p} \right) \vee \left( { \sim q} \right)$
Answer
507.9k+ views
Hint: To identify the false statement from the given four options, we will proceed by checking the options one by one. To check if the statements are true, one can also make truth tables of the statements.
Complete step-by-step answer:
(a) $ \sim \left[ {p \vee \left( { \sim q} \right)} \right]$
Since by De Morgan’s Law, $ \sim \left( {p \vee q} \right) \equiv \,\, \sim p\,\, \wedge \sim q$, we get
$ \equiv \left( { \sim p} \right) \wedge \sim \left( { \sim q} \right)$
$ \equiv \left( { \sim p} \right) \wedge q$
Therefore $ \sim \left[ {p \vee \left( { \sim q} \right)} \right]{ \equiv }\left( { \sim p} \right) \vee q$
Hence, (a) is a false statement.
(b) Next, we are to check if $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,$is a tautology.
The truth table for $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,$is given by
Therefore $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,$is a Tautology.
Hence, (b) is true.
(c) Similarly, the truth table for $\left[ {p \wedge q} \right] \wedge \left( { \sim p} \right)$ is given by
Therefore, $\left[ {p \wedge q} \right] \wedge \left( { \sim p} \right)$ is a contradiction.
Hence, (c) is true.
(d) $ \sim \left[ {p \vee q} \right]$
$ \equiv \left( { \sim p} \right) \wedge \left( { \sim q} \right)$ (by De Morgan’s Law)
Therefore $ \sim \left[ {p \vee q} \right]{ \equiv }\left( { \sim p} \right) \vee \left( { \sim q} \right)$
Hence, (d) is a false statement.
Therefore, the false statements are $ \sim \left[ {p \vee \left( { \sim q} \right)} \right] \equiv \left( { \sim p} \right) \vee q$and $ \sim \left[ {p \vee q} \right] \equiv \left( { \sim p} \right) \vee \left( { \sim q} \right)$.
Hence, the correct options are (a) and (d).
Note: Remember De Morgan’s Law:
$ \sim \left( {p \vee q} \right) \equiv \,\, \sim p\,\, \wedge \sim q$
$ \sim \left( {p \wedge q} \right) \equiv \,\, \sim p\,\, \vee \sim q$
Try to make a truth table for easy calculation.
Complete step-by-step answer:
(a) $ \sim \left[ {p \vee \left( { \sim q} \right)} \right]$
Since by De Morgan’s Law, $ \sim \left( {p \vee q} \right) \equiv \,\, \sim p\,\, \wedge \sim q$, we get
$ \equiv \left( { \sim p} \right) \wedge \sim \left( { \sim q} \right)$
$ \equiv \left( { \sim p} \right) \wedge q$
Therefore $ \sim \left[ {p \vee \left( { \sim q} \right)} \right]{ \equiv }\left( { \sim p} \right) \vee q$
Hence, (a) is a false statement.
(b) Next, we are to check if $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,$is a tautology.
The truth table for $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,$is given by
p | q | $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,$ |
F | F | T |
F | T | T |
T | F | T |
T | T | T |
Therefore $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,$is a Tautology.
Hence, (b) is true.
(c) Similarly, the truth table for $\left[ {p \wedge q} \right] \wedge \left( { \sim p} \right)$ is given by
p | q | $\left[ {p \wedge q} \right] \wedge \left( { \sim p} \right)$ |
F | F | F |
F | T | F |
T | F | F |
T | T | F |
Therefore, $\left[ {p \wedge q} \right] \wedge \left( { \sim p} \right)$ is a contradiction.
Hence, (c) is true.
(d) $ \sim \left[ {p \vee q} \right]$
$ \equiv \left( { \sim p} \right) \wedge \left( { \sim q} \right)$ (by De Morgan’s Law)
Therefore $ \sim \left[ {p \vee q} \right]{ \equiv }\left( { \sim p} \right) \vee \left( { \sim q} \right)$
Hence, (d) is a false statement.
Therefore, the false statements are $ \sim \left[ {p \vee \left( { \sim q} \right)} \right] \equiv \left( { \sim p} \right) \vee q$and $ \sim \left[ {p \vee q} \right] \equiv \left( { \sim p} \right) \vee \left( { \sim q} \right)$.
Hence, the correct options are (a) and (d).
Note: Remember De Morgan’s Law:
$ \sim \left( {p \vee q} \right) \equiv \,\, \sim p\,\, \wedge \sim q$
$ \sim \left( {p \wedge q} \right) \equiv \,\, \sim p\,\, \vee \sim q$
Try to make a truth table for easy calculation.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
