
Identify the false statement
(a) $ \sim \left[ {p \vee \left( { \sim q} \right)} \right] \equiv \left( { \sim p} \right) \vee q$
(b) $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,\,{\text{is a tautology}}$
(c) $\left[ {p \wedge q} \right] \wedge \left( { \sim p} \right)\,\,{\text{is a contradiction}}$
(d) $ \sim \left[ {p \vee q} \right] \equiv \left( { \sim p} \right) \vee \left( { \sim q} \right)$
Answer
588.3k+ views
Hint: To identify the false statement from the given four options, we will proceed by checking the options one by one. To check if the statements are true, one can also make truth tables of the statements.
Complete step-by-step answer:
(a) $ \sim \left[ {p \vee \left( { \sim q} \right)} \right]$
Since by De Morgan’s Law, $ \sim \left( {p \vee q} \right) \equiv \,\, \sim p\,\, \wedge \sim q$, we get
$ \equiv \left( { \sim p} \right) \wedge \sim \left( { \sim q} \right)$
$ \equiv \left( { \sim p} \right) \wedge q$
Therefore $ \sim \left[ {p \vee \left( { \sim q} \right)} \right]{ \equiv }\left( { \sim p} \right) \vee q$
Hence, (a) is a false statement.
(b) Next, we are to check if $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,$is a tautology.
The truth table for $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,$is given by
Therefore $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,$is a Tautology.
Hence, (b) is true.
(c) Similarly, the truth table for $\left[ {p \wedge q} \right] \wedge \left( { \sim p} \right)$ is given by
Therefore, $\left[ {p \wedge q} \right] \wedge \left( { \sim p} \right)$ is a contradiction.
Hence, (c) is true.
(d) $ \sim \left[ {p \vee q} \right]$
$ \equiv \left( { \sim p} \right) \wedge \left( { \sim q} \right)$ (by De Morgan’s Law)
Therefore $ \sim \left[ {p \vee q} \right]{ \equiv }\left( { \sim p} \right) \vee \left( { \sim q} \right)$
Hence, (d) is a false statement.
Therefore, the false statements are $ \sim \left[ {p \vee \left( { \sim q} \right)} \right] \equiv \left( { \sim p} \right) \vee q$and $ \sim \left[ {p \vee q} \right] \equiv \left( { \sim p} \right) \vee \left( { \sim q} \right)$.
Hence, the correct options are (a) and (d).
Note: Remember De Morgan’s Law:
$ \sim \left( {p \vee q} \right) \equiv \,\, \sim p\,\, \wedge \sim q$
$ \sim \left( {p \wedge q} \right) \equiv \,\, \sim p\,\, \vee \sim q$
Try to make a truth table for easy calculation.
Complete step-by-step answer:
(a) $ \sim \left[ {p \vee \left( { \sim q} \right)} \right]$
Since by De Morgan’s Law, $ \sim \left( {p \vee q} \right) \equiv \,\, \sim p\,\, \wedge \sim q$, we get
$ \equiv \left( { \sim p} \right) \wedge \sim \left( { \sim q} \right)$
$ \equiv \left( { \sim p} \right) \wedge q$
Therefore $ \sim \left[ {p \vee \left( { \sim q} \right)} \right]{ \equiv }\left( { \sim p} \right) \vee q$
Hence, (a) is a false statement.
(b) Next, we are to check if $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,$is a tautology.
The truth table for $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,$is given by
| p | q | $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,$ |
| F | F | T |
| F | T | T |
| T | F | T |
| T | T | T |
Therefore $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,$is a Tautology.
Hence, (b) is true.
(c) Similarly, the truth table for $\left[ {p \wedge q} \right] \wedge \left( { \sim p} \right)$ is given by
| p | q | $\left[ {p \wedge q} \right] \wedge \left( { \sim p} \right)$ |
| F | F | F |
| F | T | F |
| T | F | F |
| T | T | F |
Therefore, $\left[ {p \wedge q} \right] \wedge \left( { \sim p} \right)$ is a contradiction.
Hence, (c) is true.
(d) $ \sim \left[ {p \vee q} \right]$
$ \equiv \left( { \sim p} \right) \wedge \left( { \sim q} \right)$ (by De Morgan’s Law)
Therefore $ \sim \left[ {p \vee q} \right]{ \equiv }\left( { \sim p} \right) \vee \left( { \sim q} \right)$
Hence, (d) is a false statement.
Therefore, the false statements are $ \sim \left[ {p \vee \left( { \sim q} \right)} \right] \equiv \left( { \sim p} \right) \vee q$and $ \sim \left[ {p \vee q} \right] \equiv \left( { \sim p} \right) \vee \left( { \sim q} \right)$.
Hence, the correct options are (a) and (d).
Note: Remember De Morgan’s Law:
$ \sim \left( {p \vee q} \right) \equiv \,\, \sim p\,\, \wedge \sim q$
$ \sim \left( {p \wedge q} \right) \equiv \,\, \sim p\,\, \vee \sim q$
Try to make a truth table for easy calculation.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

