Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Identify the false statement

(a) $ \sim \left[ {p \vee \left( { \sim q} \right)} \right] \equiv \left( { \sim p} \right) \vee q$
(b) $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,\,{\text{is a tautology}}$
(c) $\left[ {p \wedge q} \right] \wedge \left( { \sim p} \right)\,\,{\text{is a contradiction}}$
(d) $ \sim \left[ {p \vee q} \right] \equiv \left( { \sim p} \right) \vee \left( { \sim q} \right)$

Answer
VerifiedVerified
507.9k+ views
Hint: To identify the false statement from the given four options, we will proceed by checking the options one by one. To check if the statements are true, one can also make truth tables of the statements.

Complete step-by-step answer:
(a) $ \sim \left[ {p \vee \left( { \sim q} \right)} \right]$
Since by De Morgan’s Law, $ \sim \left( {p \vee q} \right) \equiv \,\, \sim p\,\, \wedge \sim q$, we get
$ \equiv \left( { \sim p} \right) \wedge \sim \left( { \sim q} \right)$
$ \equiv \left( { \sim p} \right) \wedge q$
Therefore $ \sim \left[ {p \vee \left( { \sim q} \right)} \right]{ \equiv }\left( { \sim p} \right) \vee q$
Hence, (a) is a false statement.
(b) Next, we are to check if $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,$is a tautology.
The truth table for $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,$is given by

pq$\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,$
FFT
FTT
TFT
TTT


Therefore $\left[ {p \vee q} \right] \vee \left( { \sim p} \right)\,$is a Tautology.
Hence, (b) is true.
(c) Similarly, the truth table for $\left[ {p \wedge q} \right] \wedge \left( { \sim p} \right)$ is given by

pq$\left[ {p \wedge q} \right] \wedge \left( { \sim p} \right)$
FFF
FTF
TFF
TTF


Therefore, $\left[ {p \wedge q} \right] \wedge \left( { \sim p} \right)$ is a contradiction.

Hence, (c) is true.
(d) $ \sim \left[ {p \vee q} \right]$
$ \equiv \left( { \sim p} \right) \wedge \left( { \sim q} \right)$ (by De Morgan’s Law)
Therefore $ \sim \left[ {p \vee q} \right]{ \equiv }\left( { \sim p} \right) \vee \left( { \sim q} \right)$
Hence, (d) is a false statement.
Therefore, the false statements are $ \sim \left[ {p \vee \left( { \sim q} \right)} \right] \equiv \left( { \sim p} \right) \vee q$and $ \sim \left[ {p \vee q} \right] \equiv \left( { \sim p} \right) \vee \left( { \sim q} \right)$.
Hence, the correct options are (a) and (d).
Note: Remember De Morgan’s Law:
$ \sim \left( {p \vee q} \right) \equiv \,\, \sim p\,\, \wedge \sim q$
$ \sim \left( {p \wedge q} \right) \equiv \,\, \sim p\,\, \vee \sim q$
Try to make a truth table for easy calculation.