
(i) What is the value of \[{\sin ^2}{29^ \circ } + {\sin ^2}{61^ \circ }\] ?
(ii) If ${\text{x = a}}\sin \theta + {\text{b}}\cos \theta $ and ${\text{y = a}}\cos \theta - {\text{b}}\sin \theta $ then find the value of ${{\text{x}}^2}{\text{ + }}{{\text{y}}^2}$?
(iii) If ${\text{x = acos}}\theta $ and${\text{y = b}}\sin \theta $ then find the value of ${{\text{b}}^2}{{\text{x}}^2}{\text{ + }}{{\text{a}}^2}{{\text{y}}^2}$.
Answer
575.4k+ views
Hint: (i) We can write $\cos \theta = \sin \left( {{{90}^ \circ } - \theta } \right)$ and then use trigonometric identity ${\sin ^2}\theta + {\cos ^2}\theta = 1$ and you’ll get the answer. (ii) First square the values of x and y then add them. Use trigonometric identity ${\sin ^2}\theta + {\cos ^2}\theta = 1$ and you’ll get the answer.(iii) You can multiply b to value of x and a to value of y. Square and add them. You’ll get the answer.
Complete step-by-step answer:
(i)We have to find the value of \[{\sin ^2}{29^ \circ } + {\sin ^2}{61^ \circ }\].
\[ \Rightarrow {\sin ^2}{29^ \circ } + {\sin ^2}{61^ \circ } = {\sin ^2}{29^ \circ } + {\sin ^2}\left( {{{90}^ \circ } - {{61}^ \circ }} \right)\]
We know that $\cos \theta = \sin \left( {{{90}^ \circ } - \theta } \right)$. So we can write $\cos {29^ \circ } = \sin \left( {{{90}^ \circ } - {{61}^ \circ }} \right)$
$ \Rightarrow {\sin ^2}{29^ \circ } + {\sin ^2}{61^ \circ } = {\sin ^2}{29^ \circ } + {\cos ^2}{29^ \circ }$
We know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$.Here$\theta = {29^ \circ }$ , so on putting the value we get-
$ \Rightarrow {\sin ^2}{29^ \circ } + {\sin ^2}{61^ \circ } = {\sin ^2}{29^ \circ } + {\cos ^2}{29^ \circ } = 1$
Answer-Hence the answer is \[{\sin ^2}{29^ \circ } + {\sin ^2}{61^ \circ } = 1\]
(ii)Given, ${\text{x = a}}\sin \theta + {\text{b}}\cos \theta $--- (I)
${\text{y = a}}\cos \theta - {\text{b}}\sin \theta $---- (II)
We have to find the value of ${{\text{x}}^2}{\text{ + }}{{\text{y}}^2}$. So first we square eq.(I) and (II) then add them.
On squaring them, we get-
\[
\Rightarrow {{\text{x}}^2}{\text{ = }}{\left( {{\text{a}}\sin \theta + {\text{b}}\cos \theta } \right)^2} \\
\Rightarrow {{\text{x}}^2}{\text{ = }}{{\text{a}}^2}{\sin ^2}\theta + {{\text{b}}^2}{\cos ^2}\theta + {\text{2absin}}\theta {\text{cos}}\theta \\
\]
As ${\left( {{\text{a + b}}} \right)^2}{\text{ = }}{{\text{a}}^2} + {{\text{b}}^2} + {\text{2ab}}$
And \[{{\text{y}}^2}{\text{ = }}{\left( {{\text{a}}\cos \theta + {\text{bsin}}\theta } \right)^2}\]
As ${\left( {{\text{a + b}}} \right)^2}{\text{ = }}{{\text{a}}^2} + {{\text{b}}^2} + {\text{2ab}}$, on using the formula-
$ \Rightarrow {{\text{y}}^2}{\text{ = }}{{\text{a}}^2}{\cos ^2}\theta + {{\text{b}}^2}{\text{si}}{{\text{n}}^2}\theta + {\text{2absin}}\theta {\text{cos}}\theta $
Now putting the values in ${{\text{x}}^2}{\text{ + }}{{\text{y}}^2}$, we get
$ \Rightarrow {{\text{x}}^2}{\text{ + }}{{\text{y}}^2} = {{\text{a}}^2}{\sin ^2}\theta + {{\text{b}}^2}{\cos ^2}\theta + {\text{2absin}}\theta {\text{cos}}\theta + {{\text{b}}^2}{\sin ^2}\theta + {{\text{a}}^2}{\cos ^2}\theta + {\text{2absin}}\theta {\text{cos}}\theta $
On separating common terms and simplifying we get,
\[
\Rightarrow {{\text{x}}^2}{\text{ + }}{{\text{y}}^2} = {{\text{a}}^2}\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) + {{\text{b}}^2}\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) + {\text{2absin}}\theta {\text{cos}}\theta + {\text{2absin}}\theta {\text{cos}}\theta \\
\Rightarrow {{\text{x}}^2}{\text{ + }}{{\text{y}}^2} = {{\text{a}}^2} + {{\text{b}}^2} + 4{\text{absin}}\theta {\text{cos}}\theta \\
\]
[As ${\sin ^2}\theta + {\cos ^2}\theta = 1$]
\[ \Rightarrow {{\text{x}}^2}{\text{ + }}{{\text{y}}^2} = {{\text{a}}^2} + {{\text{b}}^2} + 4{\text{absin}}\theta {\text{cos}}\theta \]
We know that${\text{2sin}}\theta {\text{cos}}\theta = \sin 2\theta $ , so we get,
Answer\[ \Rightarrow {{\text{x}}^2}{\text{ + }}{{\text{y}}^2} = {{\text{a}}^2} + {{\text{b}}^2} + 2{\text{absin2}}\theta \]
(iii)Given, ${\text{x = acos}}\theta $ -- (i)
And${\text{y = b}}\sin \theta $--- (ii)
We have to find the value of ${{\text{b}}^2}{{\text{x}}^2}{\text{ + }}{{\text{a}}^2}{{\text{y}}^2}$.
On multiplying eq. (i) with b and eq. (ii) with a and squaring both eq., we get
$ \Rightarrow {\left( {{\text{bx}}} \right)^2}{\text{ = }}{\left( {{\text{ab}}\cos \theta } \right)^2} \Rightarrow {{\text{b}}^2}{{\text{x}}^2}{\text{ = }}{{\text{a}}^2}{{\text{b}}^2}{\text{ co}}{{\text{s}}^2}\theta $ --- (I)
$ \Rightarrow {\left( {{\text{ay}}} \right)^2} = {\left( {{\text{ba}}\sin \theta } \right)^2} \Rightarrow {{\text{a}}^2}{{\text{y}}^2}{\text{ = }}{{\text{a}}^2}{{\text{b}}^2}{\text{ si}}{{\text{s}}^2}\theta $ -- (II)
On adding eq. (I) and (II), we get-
\[ \Rightarrow {{\text{b}}^2}{{\text{x}}^2}{\text{ + }}{{\text{a}}^2}{{\text{y}}^2} = {{\text{a}}^2}{{\text{b}}^2}\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right){\text{ }}\]
We know that ${\cos ^2}\theta + {\sin^2}\theta = 1$. So we get,
Answer$ \Rightarrow {{\text{b}}^2}{{\text{x}}^2}{\text{ + }}{{\text{a}}^2}{{\text{y}}^2} = {{\text{a}}^2}{{\text{b}}^2}$
Note: On solving question (ii) student may go wrong if they leave the answer as \[ \Rightarrow {{\text{x}}^2}{\text{ + }}{{\text{y}}^2} = {{\text{a}}^2} + {{\text{b}}^2} + 4{\text{absin}}\theta {\text{cos}}\theta \] which is wrong as the equation can be further simplified by using the formula ${\text{2sin}}\theta {\text{cos}}\theta = \sin 2\theta $. We have to write the answers of the questions in a simplified form.
Complete step-by-step answer:
(i)We have to find the value of \[{\sin ^2}{29^ \circ } + {\sin ^2}{61^ \circ }\].
\[ \Rightarrow {\sin ^2}{29^ \circ } + {\sin ^2}{61^ \circ } = {\sin ^2}{29^ \circ } + {\sin ^2}\left( {{{90}^ \circ } - {{61}^ \circ }} \right)\]
We know that $\cos \theta = \sin \left( {{{90}^ \circ } - \theta } \right)$. So we can write $\cos {29^ \circ } = \sin \left( {{{90}^ \circ } - {{61}^ \circ }} \right)$
$ \Rightarrow {\sin ^2}{29^ \circ } + {\sin ^2}{61^ \circ } = {\sin ^2}{29^ \circ } + {\cos ^2}{29^ \circ }$
We know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$.Here$\theta = {29^ \circ }$ , so on putting the value we get-
$ \Rightarrow {\sin ^2}{29^ \circ } + {\sin ^2}{61^ \circ } = {\sin ^2}{29^ \circ } + {\cos ^2}{29^ \circ } = 1$
Answer-Hence the answer is \[{\sin ^2}{29^ \circ } + {\sin ^2}{61^ \circ } = 1\]
(ii)Given, ${\text{x = a}}\sin \theta + {\text{b}}\cos \theta $--- (I)
${\text{y = a}}\cos \theta - {\text{b}}\sin \theta $---- (II)
We have to find the value of ${{\text{x}}^2}{\text{ + }}{{\text{y}}^2}$. So first we square eq.(I) and (II) then add them.
On squaring them, we get-
\[
\Rightarrow {{\text{x}}^2}{\text{ = }}{\left( {{\text{a}}\sin \theta + {\text{b}}\cos \theta } \right)^2} \\
\Rightarrow {{\text{x}}^2}{\text{ = }}{{\text{a}}^2}{\sin ^2}\theta + {{\text{b}}^2}{\cos ^2}\theta + {\text{2absin}}\theta {\text{cos}}\theta \\
\]
As ${\left( {{\text{a + b}}} \right)^2}{\text{ = }}{{\text{a}}^2} + {{\text{b}}^2} + {\text{2ab}}$
And \[{{\text{y}}^2}{\text{ = }}{\left( {{\text{a}}\cos \theta + {\text{bsin}}\theta } \right)^2}\]
As ${\left( {{\text{a + b}}} \right)^2}{\text{ = }}{{\text{a}}^2} + {{\text{b}}^2} + {\text{2ab}}$, on using the formula-
$ \Rightarrow {{\text{y}}^2}{\text{ = }}{{\text{a}}^2}{\cos ^2}\theta + {{\text{b}}^2}{\text{si}}{{\text{n}}^2}\theta + {\text{2absin}}\theta {\text{cos}}\theta $
Now putting the values in ${{\text{x}}^2}{\text{ + }}{{\text{y}}^2}$, we get
$ \Rightarrow {{\text{x}}^2}{\text{ + }}{{\text{y}}^2} = {{\text{a}}^2}{\sin ^2}\theta + {{\text{b}}^2}{\cos ^2}\theta + {\text{2absin}}\theta {\text{cos}}\theta + {{\text{b}}^2}{\sin ^2}\theta + {{\text{a}}^2}{\cos ^2}\theta + {\text{2absin}}\theta {\text{cos}}\theta $
On separating common terms and simplifying we get,
\[
\Rightarrow {{\text{x}}^2}{\text{ + }}{{\text{y}}^2} = {{\text{a}}^2}\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) + {{\text{b}}^2}\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) + {\text{2absin}}\theta {\text{cos}}\theta + {\text{2absin}}\theta {\text{cos}}\theta \\
\Rightarrow {{\text{x}}^2}{\text{ + }}{{\text{y}}^2} = {{\text{a}}^2} + {{\text{b}}^2} + 4{\text{absin}}\theta {\text{cos}}\theta \\
\]
[As ${\sin ^2}\theta + {\cos ^2}\theta = 1$]
\[ \Rightarrow {{\text{x}}^2}{\text{ + }}{{\text{y}}^2} = {{\text{a}}^2} + {{\text{b}}^2} + 4{\text{absin}}\theta {\text{cos}}\theta \]
We know that${\text{2sin}}\theta {\text{cos}}\theta = \sin 2\theta $ , so we get,
Answer\[ \Rightarrow {{\text{x}}^2}{\text{ + }}{{\text{y}}^2} = {{\text{a}}^2} + {{\text{b}}^2} + 2{\text{absin2}}\theta \]
(iii)Given, ${\text{x = acos}}\theta $ -- (i)
And${\text{y = b}}\sin \theta $--- (ii)
We have to find the value of ${{\text{b}}^2}{{\text{x}}^2}{\text{ + }}{{\text{a}}^2}{{\text{y}}^2}$.
On multiplying eq. (i) with b and eq. (ii) with a and squaring both eq., we get
$ \Rightarrow {\left( {{\text{bx}}} \right)^2}{\text{ = }}{\left( {{\text{ab}}\cos \theta } \right)^2} \Rightarrow {{\text{b}}^2}{{\text{x}}^2}{\text{ = }}{{\text{a}}^2}{{\text{b}}^2}{\text{ co}}{{\text{s}}^2}\theta $ --- (I)
$ \Rightarrow {\left( {{\text{ay}}} \right)^2} = {\left( {{\text{ba}}\sin \theta } \right)^2} \Rightarrow {{\text{a}}^2}{{\text{y}}^2}{\text{ = }}{{\text{a}}^2}{{\text{b}}^2}{\text{ si}}{{\text{s}}^2}\theta $ -- (II)
On adding eq. (I) and (II), we get-
\[ \Rightarrow {{\text{b}}^2}{{\text{x}}^2}{\text{ + }}{{\text{a}}^2}{{\text{y}}^2} = {{\text{a}}^2}{{\text{b}}^2}\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right){\text{ }}\]
We know that ${\cos ^2}\theta + {\sin^2}\theta = 1$. So we get,
Answer$ \Rightarrow {{\text{b}}^2}{{\text{x}}^2}{\text{ + }}{{\text{a}}^2}{{\text{y}}^2} = {{\text{a}}^2}{{\text{b}}^2}$
Note: On solving question (ii) student may go wrong if they leave the answer as \[ \Rightarrow {{\text{x}}^2}{\text{ + }}{{\text{y}}^2} = {{\text{a}}^2} + {{\text{b}}^2} + 4{\text{absin}}\theta {\text{cos}}\theta \] which is wrong as the equation can be further simplified by using the formula ${\text{2sin}}\theta {\text{cos}}\theta = \sin 2\theta $. We have to write the answers of the questions in a simplified form.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Discuss the various forms of bacteria class 11 biology CBSE

What is Environment class 11 chemistry CBSE

10 examples of diffusion in everyday life

Give four adaptations shown by flowers pollinated by class 11 biology CBSE

