   Question Answers

# (i) If we have a trigonometric equation $\cos 3A = \sin (A - {34^0}),$ where A is an acute angle, find the value of A.(ii) Prove the following identity, where the angles involved are acute angles for which the expression so defined is.$\dfrac{{1 + {{\cot }^2}A}}{{1 + {{\tan }^2}A}} = {\left( {\dfrac{{1 - \cot A}}{{1 - \tan A}}} \right)^2}$  Hint- In this question, simply use properties of acute angle i.e. for acute angle $\theta ,\cos \theta = \sin ({90^0} - \theta )$ and equate both sides to get the answer. For the second part, use basic trigonometric formulas and simplify both sides of the equation separately to check the result of L.H.S to R.H.S.

Complete step-by-step solution -
(i) Given that: $\cos 3A = \sin (A - {34^0})$ ---(a)
where A is acute angle $\theta ,\cos \theta = \sin ({90^0} - \theta )$ --(b)
From equation (a) we get
$\Rightarrow \cos 3A = \sin (A - {34^0})$
Using (b) we get
$\Rightarrow \sin ({90^0} - 3A) = \sin (A - {34^0})$
$\Rightarrow {90^0} - 3A = A - {34^0}$
$\Rightarrow {90^0} + {34^0} = A + 3A$
$\Rightarrow {124^0} = 4A$
$\Rightarrow \dfrac{{{{124}^0}}}{4} = A$
or, $A = {31^0}$
Hence, the value of $A = {31^0}$
$\therefore A = {31^0}$

(ii) To prove $\dfrac{{1 + {{\cot }^2}A}}{{1 + {{\tan }^2}A}} = {\left( {\dfrac{{1 - \cot A}}{{1 - \tan A}}} \right)^2}$ , we will just solve for the L.H.S and then equate that to the R.H.S.
L.H.S $= \dfrac{{1 + {{\cot }^2}A}}{{1 + {{\tan }^2}A}}$
Now, substitute $\cot A = \dfrac{{\cos A}}{{\sin A}}$ and $\tan A = \dfrac{{\sin A}}{{\cos A}}$
$= \dfrac{{1 + \left( {\dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}}} \right)}}{{1 + \left( {\dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}} \right)}} = \dfrac{{\dfrac{{{{\sin }^2}A + {{\cos }^2}A}}{{{{\sin }^2}A}}}}{{\dfrac{{{{\cos }^2}A + {{\sin }^2}A}}{{{{\cos }^2}A}}}}$
Now, we know that ${\sin ^2}A + {\cos ^2}A = 1$
$= \dfrac{{\dfrac{1}{{{{\sin }^2}A}}}}{{\dfrac{1}{{{{\cos }^2}A}}}}$
Now, multiply and divide by $1 - 2\sin A\cos A$
$= \dfrac{{\dfrac{{1 - 2\sin A\cos A}}{{{{\sin }^2}A}}}}{{\dfrac{{1 - 2\sin A\cos A}}{{{{\cos }^2}A}}}}$
Split the denominator fraction of ${\sin ^2}A,{\cos ^2}A$
$= \dfrac{{\dfrac{1}{{{{\sin }^2}A}} - \dfrac{{2\sin A\cos A}}{{{{\sin }^2}A}}}}{{\dfrac{1}{{{{\cos }^2}A}} - \dfrac{{2\sin A\cos A}}{{{{\cos }^2}A}}}}$
Now, we know that $\dfrac{1}{{\sin A}} = \cos ecA,\dfrac{1}{{\cos A}} = \sec A$
$= \dfrac{{\cos e{c^2}A - \dfrac{{2\cos A}}{{\sin A}}}}{{{{\sec }^2}A - \dfrac{{2\sin A}}{{\cos A}}}}$
We know that $\cot A = \dfrac{{\cos A}}{{\sin A}}$ and $\tan A = \dfrac{{\sin A}}{{\cos A}}$
$= \dfrac{{\cos e{c^2}A - 2\cot A}}{{{{\sec }^2}A - 2\tan A}}$
Now, we know that $\cos e{c^2}A = 1 + {\cot ^2}A$ , $se{c^2}A = 1 + {\tan ^2}A$
$= \dfrac{{1 + {{\cot }^2}A - 2\cot A}}{{1 + {{\tan }^2}A - 2\tan A}} = \dfrac{{{1^2} + {{\cot }^2}A - 2\cot A}}{{{1^2} + {{\tan }^2}A - 2\tan A}}$
We know that, ${a^2} + {b^2} - 2ab = {(a - b)^2}$
$= \dfrac{{{{(1 - \cot A)}^2}}}{{{{(1 - \tan A)}^2}}} = {\left( {\dfrac{{1 - \cot A}}{{1 - \tan A}}} \right)^2} = R.H.S$
Now, L.H.S = R.H.S
Hence proved that $\dfrac{{1 + {{\cot }^2}A}}{{1 + {{\tan }^2}A}} = {\left( {\dfrac{{1 - \cot A}}{{1 - \tan A}}} \right)^2}$

Note- In such types of question, we just have to keep in mind of the trigonometric identities to simplify the equations using identities like $\cos \theta = \sin ({90^0} - \theta )$ , $\cot A = \dfrac{{\cos A}}{{\sin A}}$ , $\tan A = \dfrac{{\sin A}}{{\cos A}}$ , ${\sin ^2}A + {\cos ^2}A = 1$ and $\dfrac{1}{{\sin A}} = \cos ecA,\dfrac{1}{{\cos A}} = \sec A$ . Also, keep in mind of the algebraic identities like ${a^2} + {b^2} - 2ab = {(a - b)^2}$ .
View Notes
Trigonometric Functions  Sin Cos Formula  Inverse Trigonometric Functions  Why do we Have Two Eyes?  CBSE Class 12 Maths Chapter-2 Inverse Trigonometric Functions Formula  Cos 360  Sin 120  Value of Cos 120  Value of Sin 180  CBSE Class 11 Maths Formulas  Important Questions for CBSE Class 11 Maths Chapter 3 - Trigonometric Functions  NCERT Books Free Download for Class 11 Maths Chapter 3 - Trigonometric Functions  Important Questions for CBSE Class 12 Maths Chapter 2 - Inverse Trigonometric Functions  Important Questions for CBSE Class 8 Social Science - Social and Political Life Chapter 3 - Why do we need a Parliament  Important Questions for CBSE Class 11 Physics Chapter 4 - Motion in a Plane  Important Questions for CBSE Class 11 Business Studies Chapter 7 - Formation of a Company  Important Questions for CBSE Class 7 English An Alien Hand Chapter 6 - I want Something In A Cage  Important Questions for CBSE Class 11 Physics Chapter 3 - Motion in a Straight Line  NCERT Books Free Download for Class 12 Maths Chapter-2 Inverse Trigonometric Functions  Important Questions for CBSE Class 11 Maths Chapter 5 - Complex Numbers and Quadratic Equations  CBSE Class 10 Hindi A Question Paper 2020  Hindi A Class 10 CBSE Question Paper 2009  Hindi A Class 10 CBSE Question Paper 2015  Hindi A Class 10 CBSE Question Paper 2016  Hindi A Class 10 CBSE Question Paper 2012  Hindi A Class 10 CBSE Question Paper 2010  Hindi A Class 10 CBSE Question Paper 2007  Hindi A Class 10 CBSE Question Paper 2013  Hindi A Class 10 CBSE Question Paper 2008  Hindi A Class 10 CBSE Question Paper 2014  RD Sharma Class 11 Maths Solutions Chapter 11 - Trigonometric Equations  NCERT Solutions for Class 11 Maths Chapter 3  RS Aggarwal Class 10 Solutions - Trigonometric Ratios  RS Aggarwal Class 10 Solutions - Trigonometric Identities  RD Sharma Class 11 Maths Solutions Chapter 5 - Trigonometric Functions  RS Aggarwal Class 11 Solutions Chapter-17 Trigonometric Equations  NCERT Solutions for Class 12 Maths Chapter 2  NCERT Solutions for Class 9 English Beehive Chapter 11 - If I Were You  RD Sharma Solutions for Class 10 Maths Chapter 5 - Trigonometric Ratios  RD Sharma Solutions for Class 10 Maths Chapter 6 - Trigonometric Identities  