
(i) If we have a trigonometric equation $\cos 3A = \sin (A - {34^0}),$ where A is an acute angle, find the value of A.
(ii) Prove the following identity, where the angles involved are acute angles for which the expression so defined is.
$\dfrac{{1 + {{\cot }^2}A}}{{1 + {{\tan }^2}A}} = {\left( {\dfrac{{1 - \cot A}}{{1 - \tan A}}} \right)^2}$
Answer
607.8k+ views
Hint- In this question, simply use properties of acute angle i.e. for acute angle $\theta ,\cos \theta = \sin ({90^0} - \theta )$ and equate both sides to get the answer. For the second part, use basic trigonometric formulas and simplify both sides of the equation separately to check the result of L.H.S to R.H.S.
Complete step-by-step solution -
(i) Given that: $\cos 3A = \sin (A - {34^0})$ ---(a)
where A is acute angle $\theta ,\cos \theta = \sin ({90^0} - \theta )$ --(b)
From equation (a) we get
$ \Rightarrow \cos 3A = \sin (A - {34^0})$
Using (b) we get
$ \Rightarrow \sin ({90^0} - 3A) = \sin (A - {34^0})$
$ \Rightarrow {90^0} - 3A = A - {34^0}$
$ \Rightarrow {90^0} + {34^0} = A + 3A$
$ \Rightarrow {124^0} = 4A$
$ \Rightarrow \dfrac{{{{124}^0}}}{4} = A$
or, $A = {31^0}$
Hence, the value of $A = {31^0}$
$\therefore A = {31^0}$
(ii) To prove $\dfrac{{1 + {{\cot }^2}A}}{{1 + {{\tan }^2}A}} = {\left( {\dfrac{{1 - \cot A}}{{1 - \tan A}}} \right)^2}$ , we will just solve for the L.H.S and then equate that to the R.H.S.
L.H.S $ = \dfrac{{1 + {{\cot }^2}A}}{{1 + {{\tan }^2}A}}$
Now, substitute $\cot A = \dfrac{{\cos A}}{{\sin A}}$ and $\tan A = \dfrac{{\sin A}}{{\cos A}}$
$ = \dfrac{{1 + \left( {\dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}}} \right)}}{{1 + \left( {\dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}} \right)}} = \dfrac{{\dfrac{{{{\sin }^2}A + {{\cos }^2}A}}{{{{\sin }^2}A}}}}{{\dfrac{{{{\cos }^2}A + {{\sin }^2}A}}{{{{\cos }^2}A}}}}$
Now, we know that ${\sin ^2}A + {\cos ^2}A = 1$
$ = \dfrac{{\dfrac{1}{{{{\sin }^2}A}}}}{{\dfrac{1}{{{{\cos }^2}A}}}}$
Now, multiply and divide by $1 - 2\sin A\cos A$
$ = \dfrac{{\dfrac{{1 - 2\sin A\cos A}}{{{{\sin }^2}A}}}}{{\dfrac{{1 - 2\sin A\cos A}}{{{{\cos }^2}A}}}}$
Split the denominator fraction of ${\sin ^2}A,{\cos ^2}A$
\[ = \dfrac{{\dfrac{1}{{{{\sin }^2}A}} - \dfrac{{2\sin A\cos A}}{{{{\sin }^2}A}}}}{{\dfrac{1}{{{{\cos }^2}A}} - \dfrac{{2\sin A\cos A}}{{{{\cos }^2}A}}}}\]
Now, we know that $\dfrac{1}{{\sin A}} = \cos ecA,\dfrac{1}{{\cos A}} = \sec A$
\[ = \dfrac{{\cos e{c^2}A - \dfrac{{2\cos A}}{{\sin A}}}}{{{{\sec }^2}A - \dfrac{{2\sin A}}{{\cos A}}}}\]
We know that $\cot A = \dfrac{{\cos A}}{{\sin A}}$ and $\tan A = \dfrac{{\sin A}}{{\cos A}}$
\[ = \dfrac{{\cos e{c^2}A - 2\cot A}}{{{{\sec }^2}A - 2\tan A}}\]
Now, we know that $\cos e{c^2}A = 1 + {\cot ^2}A$ , $se{c^2}A = 1 + {\tan ^2}A$
\[ = \dfrac{{1 + {{\cot }^2}A - 2\cot A}}{{1 + {{\tan }^2}A - 2\tan A}} = \dfrac{{{1^2} + {{\cot }^2}A - 2\cot A}}{{{1^2} + {{\tan }^2}A - 2\tan A}}\]
We know that, ${a^2} + {b^2} - 2ab = {(a - b)^2}$
\[ = \dfrac{{{{(1 - \cot A)}^2}}}{{{{(1 - \tan A)}^2}}} = {\left( {\dfrac{{1 - \cot A}}{{1 - \tan A}}} \right)^2} = R.H.S\]
Now, L.H.S = R.H.S
Hence proved that $\dfrac{{1 + {{\cot }^2}A}}{{1 + {{\tan }^2}A}} = {\left( {\dfrac{{1 - \cot A}}{{1 - \tan A}}} \right)^2}$
Note- In such types of question, we just have to keep in mind of the trigonometric identities to simplify the equations using identities like $\cos \theta = \sin ({90^0} - \theta )$ , $\cot A = \dfrac{{\cos A}}{{\sin A}}$ , $\tan A = \dfrac{{\sin A}}{{\cos A}}$ , ${\sin ^2}A + {\cos ^2}A = 1$ and $\dfrac{1}{{\sin A}} = \cos ecA,\dfrac{1}{{\cos A}} = \sec A$ . Also, keep in mind of the algebraic identities like ${a^2} + {b^2} - 2ab = {(a - b)^2}$ .
Complete step-by-step solution -
(i) Given that: $\cos 3A = \sin (A - {34^0})$ ---(a)
where A is acute angle $\theta ,\cos \theta = \sin ({90^0} - \theta )$ --(b)
From equation (a) we get
$ \Rightarrow \cos 3A = \sin (A - {34^0})$
Using (b) we get
$ \Rightarrow \sin ({90^0} - 3A) = \sin (A - {34^0})$
$ \Rightarrow {90^0} - 3A = A - {34^0}$
$ \Rightarrow {90^0} + {34^0} = A + 3A$
$ \Rightarrow {124^0} = 4A$
$ \Rightarrow \dfrac{{{{124}^0}}}{4} = A$
or, $A = {31^0}$
Hence, the value of $A = {31^0}$
$\therefore A = {31^0}$
(ii) To prove $\dfrac{{1 + {{\cot }^2}A}}{{1 + {{\tan }^2}A}} = {\left( {\dfrac{{1 - \cot A}}{{1 - \tan A}}} \right)^2}$ , we will just solve for the L.H.S and then equate that to the R.H.S.
L.H.S $ = \dfrac{{1 + {{\cot }^2}A}}{{1 + {{\tan }^2}A}}$
Now, substitute $\cot A = \dfrac{{\cos A}}{{\sin A}}$ and $\tan A = \dfrac{{\sin A}}{{\cos A}}$
$ = \dfrac{{1 + \left( {\dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}}} \right)}}{{1 + \left( {\dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}} \right)}} = \dfrac{{\dfrac{{{{\sin }^2}A + {{\cos }^2}A}}{{{{\sin }^2}A}}}}{{\dfrac{{{{\cos }^2}A + {{\sin }^2}A}}{{{{\cos }^2}A}}}}$
Now, we know that ${\sin ^2}A + {\cos ^2}A = 1$
$ = \dfrac{{\dfrac{1}{{{{\sin }^2}A}}}}{{\dfrac{1}{{{{\cos }^2}A}}}}$
Now, multiply and divide by $1 - 2\sin A\cos A$
$ = \dfrac{{\dfrac{{1 - 2\sin A\cos A}}{{{{\sin }^2}A}}}}{{\dfrac{{1 - 2\sin A\cos A}}{{{{\cos }^2}A}}}}$
Split the denominator fraction of ${\sin ^2}A,{\cos ^2}A$
\[ = \dfrac{{\dfrac{1}{{{{\sin }^2}A}} - \dfrac{{2\sin A\cos A}}{{{{\sin }^2}A}}}}{{\dfrac{1}{{{{\cos }^2}A}} - \dfrac{{2\sin A\cos A}}{{{{\cos }^2}A}}}}\]
Now, we know that $\dfrac{1}{{\sin A}} = \cos ecA,\dfrac{1}{{\cos A}} = \sec A$
\[ = \dfrac{{\cos e{c^2}A - \dfrac{{2\cos A}}{{\sin A}}}}{{{{\sec }^2}A - \dfrac{{2\sin A}}{{\cos A}}}}\]
We know that $\cot A = \dfrac{{\cos A}}{{\sin A}}$ and $\tan A = \dfrac{{\sin A}}{{\cos A}}$
\[ = \dfrac{{\cos e{c^2}A - 2\cot A}}{{{{\sec }^2}A - 2\tan A}}\]
Now, we know that $\cos e{c^2}A = 1 + {\cot ^2}A$ , $se{c^2}A = 1 + {\tan ^2}A$
\[ = \dfrac{{1 + {{\cot }^2}A - 2\cot A}}{{1 + {{\tan }^2}A - 2\tan A}} = \dfrac{{{1^2} + {{\cot }^2}A - 2\cot A}}{{{1^2} + {{\tan }^2}A - 2\tan A}}\]
We know that, ${a^2} + {b^2} - 2ab = {(a - b)^2}$
\[ = \dfrac{{{{(1 - \cot A)}^2}}}{{{{(1 - \tan A)}^2}}} = {\left( {\dfrac{{1 - \cot A}}{{1 - \tan A}}} \right)^2} = R.H.S\]
Now, L.H.S = R.H.S
Hence proved that $\dfrac{{1 + {{\cot }^2}A}}{{1 + {{\tan }^2}A}} = {\left( {\dfrac{{1 - \cot A}}{{1 - \tan A}}} \right)^2}$
Note- In such types of question, we just have to keep in mind of the trigonometric identities to simplify the equations using identities like $\cos \theta = \sin ({90^0} - \theta )$ , $\cot A = \dfrac{{\cos A}}{{\sin A}}$ , $\tan A = \dfrac{{\sin A}}{{\cos A}}$ , ${\sin ^2}A + {\cos ^2}A = 1$ and $\dfrac{1}{{\sin A}} = \cos ecA,\dfrac{1}{{\cos A}} = \sec A$ . Also, keep in mind of the algebraic identities like ${a^2} + {b^2} - 2ab = {(a - b)^2}$ .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

