
I am three times as old as my son. Five years later, I shall be two and half times as old as my son. How old am I and how old is my son?
Answer
613.2k+ views
Hint: Solve the problem by first converting into algebraic equations.
Let my age be $x$ years and my son’s age be $y$ years.
Then at present, $x = 3y$ --- (1)
Five years later,
My age will be $\left( {x + 5} \right)$ and my son’s age will be $\left( {y + 5} \right)$ years.
From the statement given in question for 5 years later, we have
$
\Rightarrow \left( {x + 5} \right) = \left( {2 + \dfrac{1}{2}} \right)\left( {y + 5} \right) \\
\Rightarrow \left( {x + 5} \right) = \left( {\dfrac{5}{2}} \right)\left( {y + 5} \right) \\
\Rightarrow 2x + 10 = 5y + 25 \\
\Rightarrow 2x - 5y - 15 = 0 \\
$ ---- (2)
Putting the value of $x$ from equation (1) into equation (2), we get
$
\Rightarrow 2\left( {3y} \right) - 5y - 15 = 0 \\
\Rightarrow y = 15 \\
$
From equation (1)
$
x = 3y \\
x = 3 \times 15 \\
x = 45 \\
$
Hence, my present age is 45 years and my son’s present age is 15 years.
Note: - In these types of problems, reduce the data in the problem statement in terms of variables. Generate equations based on the conditions given in the problem statements. Then solve those equations to determine the values of the variables.
Let my age be $x$ years and my son’s age be $y$ years.
Then at present, $x = 3y$ --- (1)
Five years later,
My age will be $\left( {x + 5} \right)$ and my son’s age will be $\left( {y + 5} \right)$ years.
From the statement given in question for 5 years later, we have
$
\Rightarrow \left( {x + 5} \right) = \left( {2 + \dfrac{1}{2}} \right)\left( {y + 5} \right) \\
\Rightarrow \left( {x + 5} \right) = \left( {\dfrac{5}{2}} \right)\left( {y + 5} \right) \\
\Rightarrow 2x + 10 = 5y + 25 \\
\Rightarrow 2x - 5y - 15 = 0 \\
$ ---- (2)
Putting the value of $x$ from equation (1) into equation (2), we get
$
\Rightarrow 2\left( {3y} \right) - 5y - 15 = 0 \\
\Rightarrow y = 15 \\
$
From equation (1)
$
x = 3y \\
x = 3 \times 15 \\
x = 45 \\
$
Hence, my present age is 45 years and my son’s present age is 15 years.
Note: - In these types of problems, reduce the data in the problem statement in terms of variables. Generate equations based on the conditions given in the problem statements. Then solve those equations to determine the values of the variables.
Recently Updated Pages
Questions & Answers - Ask your doubts

A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

