
How does \[\sin x=0\] equals \[\pi \]?
Answer
516.6k+ views
Hint: In this problem, we have to find how \[\sin x=0\] equals \[\pi \]. We should always know that the sine value is always equal to zero for every multiple of \[\pi \], where \[\pi \] radians is equal to \[{{180}^{\circ }}\]. We can now draw a graph with a sine curve to see the value of sine for \[\pi \].
Complete step by step answer:
We know that the given trigonometric function given is sine.
We should always remember that the sine value is always equal to zero for every multiple of \[\pi \], where \[\pi \] radians is equal to \[{{180}^{\circ }}\].
We can now draw a graph with a sine curve to see the value of sine for \[\pi \].
We can now see that the sine curve touches the line at 0 in every multiple of \[\pi \].
We can now write it as,
\[\Rightarrow \sin x=0\to x=k\times \pi \]
Where k is any whole number.
Therefore, we can summarize that every multiple of \[\pi \] for the sine function is always equal to zero.
Note: Students should also remember that \[\pi \] radians is equal to \[{{180}^{\circ }}\]. We should also know that the sine function goes from 0 to \[{{90}^{\circ }}=\dfrac{\pi }{2}\]and then back to 0 to \[{{180}^{\circ }}=\pi \], and when we come down to -1 to \[{{270}^{\circ }}=\dfrac{3\pi }{2}\] and when we go up to 0 again at \[{{360}^{\circ }}=2\pi \], therefore, it will be 0 at every multiple of \[\pi \]. We should also concentrate in the graph part while drawing the sine curve.
Complete step by step answer:
We know that the given trigonometric function given is sine.
We should always remember that the sine value is always equal to zero for every multiple of \[\pi \], where \[\pi \] radians is equal to \[{{180}^{\circ }}\].
We can now draw a graph with a sine curve to see the value of sine for \[\pi \].
We can now see that the sine curve touches the line at 0 in every multiple of \[\pi \].
We can now write it as,
\[\Rightarrow \sin x=0\to x=k\times \pi \]
Where k is any whole number.
Therefore, we can summarize that every multiple of \[\pi \] for the sine function is always equal to zero.
Note: Students should also remember that \[\pi \] radians is equal to \[{{180}^{\circ }}\]. We should also know that the sine function goes from 0 to \[{{90}^{\circ }}=\dfrac{\pi }{2}\]and then back to 0 to \[{{180}^{\circ }}=\pi \], and when we come down to -1 to \[{{270}^{\circ }}=\dfrac{3\pi }{2}\] and when we go up to 0 again at \[{{360}^{\circ }}=2\pi \], therefore, it will be 0 at every multiple of \[\pi \]. We should also concentrate in the graph part while drawing the sine curve.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

