
How do you write \[{{10}^{-5}}\] in decimal form?
Answer
556.5k+ views
Hint: This is a basic exponential concept problem. We will first remove the negative exponent and make it as a fraction. After making it as a fraction we will find the value of the denominator and then we will divide the numerator with the denominator. Then we will get the required decimal form.
Let us know how to get rid of a negative power.
To remove negative power in exponents we will use this formula .
\[{{a}^{-n}}=\dfrac{1}{{{a}^{n}}}\]
Using this we can solve our problem easily.
Complete step by step answer:
Given expression is \[{{10}^{-5}}\]
Now we have to change the power to positive. As we already discussed we can use the above formula.
using the above discussed formula we can write our expression as
\[\Rightarrow {{10}^{-5}}=\dfrac{1}{{{10}^{5}}}\]
Now we have to find the value of the denominator.
By calculating the denominator value we will get
\[\Rightarrow \dfrac{1}{100000}\]
Normally we will check for the prime factors that will simplify the expression and then we will perform division. But in this case we don’t do that because here the numerator is 1 so it doesn’t have any prime factors so there will be no common factor that will divide both rather than 1 . so here we will divide the expression directly. By dividing numerator with denominator we will get
\[\Rightarrow 0.00001\]
So the decimal form of \[{{10}^{-5}}\] is \[0.00001\].
Note:
We can solve these types of problems easily but we have to be aware of calculation mistakes and conversions we do. then only we can get the correct answer otherwise we may get a different answer.
Let us know how to get rid of a negative power.
To remove negative power in exponents we will use this formula .
\[{{a}^{-n}}=\dfrac{1}{{{a}^{n}}}\]
Using this we can solve our problem easily.
Complete step by step answer:
Given expression is \[{{10}^{-5}}\]
Now we have to change the power to positive. As we already discussed we can use the above formula.
using the above discussed formula we can write our expression as
\[\Rightarrow {{10}^{-5}}=\dfrac{1}{{{10}^{5}}}\]
Now we have to find the value of the denominator.
By calculating the denominator value we will get
\[\Rightarrow \dfrac{1}{100000}\]
Normally we will check for the prime factors that will simplify the expression and then we will perform division. But in this case we don’t do that because here the numerator is 1 so it doesn’t have any prime factors so there will be no common factor that will divide both rather than 1 . so here we will divide the expression directly. By dividing numerator with denominator we will get
\[\Rightarrow 0.00001\]
So the decimal form of \[{{10}^{-5}}\] is \[0.00001\].
Note:
We can solve these types of problems easily but we have to be aware of calculation mistakes and conversions we do. then only we can get the correct answer otherwise we may get a different answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

