
How do you solve $ \sec x - 1 = \tan x? $
Answer
561k+ views
Hint:Try to convert the equation in form of $ \sin \;\& \;\cos $ and then solve further in order to make the equation parallel to the compound angle formula of trigonometric identities you should divide the converted equation of $ \sin \;{\text{and}}\;\cos $ with $ \sqrt {{{(coefficient\;of\;\sin x)}^2} + {{(coefficient\;of\;\cos x)}^2}} $ in order to get the required equation in which you can easily apply compound angle formulas of trigonometric identities.
Complete step by step solution:
Given $ \sec x - 1 = \tan x $ , we have to convert it into $ \sin
\;{\text{and}}\;\cos $ form, to do this we will divide both sides with $ \sec x $
\[
\Rightarrow \sec x - 1 = \tan x \\
\Rightarrow \dfrac{{\sec x - 1}}{{\sec x}} = \dfrac{{\tan x}}{{\sec x}} \\
\Rightarrow \dfrac{{\sec x}}{{\sec x}} - \dfrac{1}{{\sec x}} = \dfrac{{\tan x}}{{\sec x}} \\
\Rightarrow 1 - \dfrac{1}{{\sec x}} = \dfrac{{\tan x}}{{\sec x}} \\
\]
Now we know that $ \sec x = \dfrac{1}{{\cos x}}\;\& \;\tan x = \dfrac{{\sin x}}{{\cos x}} $ , so replacing
them with $ \sin \;{\text{and}}\;\cos $ as
\[
\Rightarrow 1 - \dfrac{1}{{\dfrac{1}{{\cos x}}}} = \dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{1}{{\cos
x}}}} \\
\Rightarrow 1 - \cos x = \sin x \\
\Rightarrow \cos x + \sin x = 1 \\
\]
Now, in order to make this equation comparable to compound trigonometric formula, we will divide it
by $ \sqrt {{{(coefficient\;of\;\sin x)}^2} + {{(coefficient\;of\;\cos x)}^2}} $
\[
\Rightarrow \cos x + \sin x = 1 \\
\Rightarrow \dfrac{{\cos x + \sin x}}{{\sqrt {{1^2} + {1^2}} }} = \dfrac{1}{{\sqrt {{1^2} + {1^2}} }}
\\
\Rightarrow \dfrac{{\cos x + \sin x}}{{\sqrt {1 + 1} }} = \dfrac{1}{{\sqrt {1 + 1} }} \\
\Rightarrow \dfrac{{\cos x + \sin x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow \dfrac{{\cos x}}{{\sqrt 2 }} + \dfrac{{\sin x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \\
\]
Now we all know that \[\cos \dfrac{\pi }{4} = \sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\] , so replacing
$ \dfrac{1}{{\sqrt 2 }} $ with $ \cos \dfrac{\pi }{4}\;{\text{and}}\;\sin \dfrac{\pi }{4} $ , we will get
$ \Rightarrow \cos x\cos \dfrac{\pi }{4} + \sin x\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} $
We have seen this type of equation before, do you remember where?
We have seen this type of trigonometric equation before in the compound angle formula of
trigonometric identities. Now, this becomes a trigonometric identity which is similar to this
$ \cos x\cos y + \sin x\sin y = \cos (x - y) $
Now using the cosine formula of compound angle to solve further, we can write it as
$
\Rightarrow \cos x\cos \dfrac{\pi }{4} + \sin x\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow \cos (x - \dfrac{\pi }{4}) = \dfrac{1}{{\sqrt 2 }} \\
$
Now we know the general solution of $ \cos \theta = \dfrac{1}{{\sqrt 2 }} $ , which is $ x = 2n\pi \pm
\dfrac{\pi }{4},\;{\text{where}}\;n \in I $
\[
\Rightarrow \cos \left( {x - \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow x - \dfrac{\pi }{4} = 2n\pi \pm \dfrac{\pi }{4},\;{\text{where}}\;n \in I \\
\Rightarrow x = 2n\pi \pm \dfrac{\pi }{4} + \dfrac{\pi }{4},\;{\text{where}}\;n \in I \\
\]
Checking for $ x = 2n\pi + \dfrac{\pi }{4} + \dfrac{\pi }{4} = 2n\pi + \dfrac{\pi }{2} $ here $ \sec x $ and
$ \tan x $ are undefined.
Checking for $ x = 2n\pi - \dfrac{\pi }{4} + \dfrac{\pi }{4} = 2n\pi $ , $ \sec x = 1 $ and $ \tan x = 0 $ which
is satisfying $ \sec x - 1 = \tan x $
$ \therefore $ required solution is $ x = 2n\pi $
Note: We can solve it by one more method,
Given $ \sec x - 1 = \tan x $
$ \Rightarrow \sec x - \tan x = 1 $ _____(I)
We know that $ {\sec ^2}x - {\tan ^2}x = 1 $
$
\Rightarrow {\sec ^2}x - {\tan ^2}x = 1 \\
\Rightarrow (\sec x + \tan x)(\sec x - \tan x) = 1 \\
$
Now using equation (I) and substituting the value of $ \sec x - \tan x = 1 $ in above equation in order to solve further
\[ \Rightarrow (\sec x + \tan x) \times 1 = 1\]
$ \Rightarrow \sec x + \tan x = 1 $ ______(II)
Now adding equation (I) and (II) we will get,
$
\Rightarrow \sec x - \tan x + \sec x + \tan x = 1 + 1 \\
\Rightarrow 2\sec x = 2 \\
\Rightarrow \sec x = \dfrac{2}{2} \\
\Rightarrow \sec x = 1 \\
$
Now we know that $ \sec x = \dfrac{1}{{\cos x}}\; $
$
\Rightarrow \sec x = 1 \\
\Rightarrow \dfrac{1}{{\cos x}} = 1 \\
\Rightarrow 1 = \cos x \\
$
Now we know the general solution for $ \cos x = 1 $ is $ 2n\pi $ , where \[n \in I\]
$ \therefore $ required solution is $ x = 2n\pi $
Complete step by step solution:
Given $ \sec x - 1 = \tan x $ , we have to convert it into $ \sin
\;{\text{and}}\;\cos $ form, to do this we will divide both sides with $ \sec x $
\[
\Rightarrow \sec x - 1 = \tan x \\
\Rightarrow \dfrac{{\sec x - 1}}{{\sec x}} = \dfrac{{\tan x}}{{\sec x}} \\
\Rightarrow \dfrac{{\sec x}}{{\sec x}} - \dfrac{1}{{\sec x}} = \dfrac{{\tan x}}{{\sec x}} \\
\Rightarrow 1 - \dfrac{1}{{\sec x}} = \dfrac{{\tan x}}{{\sec x}} \\
\]
Now we know that $ \sec x = \dfrac{1}{{\cos x}}\;\& \;\tan x = \dfrac{{\sin x}}{{\cos x}} $ , so replacing
them with $ \sin \;{\text{and}}\;\cos $ as
\[
\Rightarrow 1 - \dfrac{1}{{\dfrac{1}{{\cos x}}}} = \dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{1}{{\cos
x}}}} \\
\Rightarrow 1 - \cos x = \sin x \\
\Rightarrow \cos x + \sin x = 1 \\
\]
Now, in order to make this equation comparable to compound trigonometric formula, we will divide it
by $ \sqrt {{{(coefficient\;of\;\sin x)}^2} + {{(coefficient\;of\;\cos x)}^2}} $
\[
\Rightarrow \cos x + \sin x = 1 \\
\Rightarrow \dfrac{{\cos x + \sin x}}{{\sqrt {{1^2} + {1^2}} }} = \dfrac{1}{{\sqrt {{1^2} + {1^2}} }}
\\
\Rightarrow \dfrac{{\cos x + \sin x}}{{\sqrt {1 + 1} }} = \dfrac{1}{{\sqrt {1 + 1} }} \\
\Rightarrow \dfrac{{\cos x + \sin x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow \dfrac{{\cos x}}{{\sqrt 2 }} + \dfrac{{\sin x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \\
\]
Now we all know that \[\cos \dfrac{\pi }{4} = \sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\] , so replacing
$ \dfrac{1}{{\sqrt 2 }} $ with $ \cos \dfrac{\pi }{4}\;{\text{and}}\;\sin \dfrac{\pi }{4} $ , we will get
$ \Rightarrow \cos x\cos \dfrac{\pi }{4} + \sin x\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} $
We have seen this type of equation before, do you remember where?
We have seen this type of trigonometric equation before in the compound angle formula of
trigonometric identities. Now, this becomes a trigonometric identity which is similar to this
$ \cos x\cos y + \sin x\sin y = \cos (x - y) $
Now using the cosine formula of compound angle to solve further, we can write it as
$
\Rightarrow \cos x\cos \dfrac{\pi }{4} + \sin x\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow \cos (x - \dfrac{\pi }{4}) = \dfrac{1}{{\sqrt 2 }} \\
$
Now we know the general solution of $ \cos \theta = \dfrac{1}{{\sqrt 2 }} $ , which is $ x = 2n\pi \pm
\dfrac{\pi }{4},\;{\text{where}}\;n \in I $
\[
\Rightarrow \cos \left( {x - \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow x - \dfrac{\pi }{4} = 2n\pi \pm \dfrac{\pi }{4},\;{\text{where}}\;n \in I \\
\Rightarrow x = 2n\pi \pm \dfrac{\pi }{4} + \dfrac{\pi }{4},\;{\text{where}}\;n \in I \\
\]
Checking for $ x = 2n\pi + \dfrac{\pi }{4} + \dfrac{\pi }{4} = 2n\pi + \dfrac{\pi }{2} $ here $ \sec x $ and
$ \tan x $ are undefined.
Checking for $ x = 2n\pi - \dfrac{\pi }{4} + \dfrac{\pi }{4} = 2n\pi $ , $ \sec x = 1 $ and $ \tan x = 0 $ which
is satisfying $ \sec x - 1 = \tan x $
$ \therefore $ required solution is $ x = 2n\pi $
Note: We can solve it by one more method,
Given $ \sec x - 1 = \tan x $
$ \Rightarrow \sec x - \tan x = 1 $ _____(I)
We know that $ {\sec ^2}x - {\tan ^2}x = 1 $
$
\Rightarrow {\sec ^2}x - {\tan ^2}x = 1 \\
\Rightarrow (\sec x + \tan x)(\sec x - \tan x) = 1 \\
$
Now using equation (I) and substituting the value of $ \sec x - \tan x = 1 $ in above equation in order to solve further
\[ \Rightarrow (\sec x + \tan x) \times 1 = 1\]
$ \Rightarrow \sec x + \tan x = 1 $ ______(II)
Now adding equation (I) and (II) we will get,
$
\Rightarrow \sec x - \tan x + \sec x + \tan x = 1 + 1 \\
\Rightarrow 2\sec x = 2 \\
\Rightarrow \sec x = \dfrac{2}{2} \\
\Rightarrow \sec x = 1 \\
$
Now we know that $ \sec x = \dfrac{1}{{\cos x}}\; $
$
\Rightarrow \sec x = 1 \\
\Rightarrow \dfrac{1}{{\cos x}} = 1 \\
\Rightarrow 1 = \cos x \\
$
Now we know the general solution for $ \cos x = 1 $ is $ 2n\pi $ , where \[n \in I\]
$ \therefore $ required solution is $ x = 2n\pi $
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

