
How do you solve $ \sec x - 1 = \tan x? $
Answer
546.3k+ views
Hint:Try to convert the equation in form of $ \sin \;\& \;\cos $ and then solve further in order to make the equation parallel to the compound angle formula of trigonometric identities you should divide the converted equation of $ \sin \;{\text{and}}\;\cos $ with $ \sqrt {{{(coefficient\;of\;\sin x)}^2} + {{(coefficient\;of\;\cos x)}^2}} $ in order to get the required equation in which you can easily apply compound angle formulas of trigonometric identities.
Complete step by step solution:
Given $ \sec x - 1 = \tan x $ , we have to convert it into $ \sin
\;{\text{and}}\;\cos $ form, to do this we will divide both sides with $ \sec x $
\[
\Rightarrow \sec x - 1 = \tan x \\
\Rightarrow \dfrac{{\sec x - 1}}{{\sec x}} = \dfrac{{\tan x}}{{\sec x}} \\
\Rightarrow \dfrac{{\sec x}}{{\sec x}} - \dfrac{1}{{\sec x}} = \dfrac{{\tan x}}{{\sec x}} \\
\Rightarrow 1 - \dfrac{1}{{\sec x}} = \dfrac{{\tan x}}{{\sec x}} \\
\]
Now we know that $ \sec x = \dfrac{1}{{\cos x}}\;\& \;\tan x = \dfrac{{\sin x}}{{\cos x}} $ , so replacing
them with $ \sin \;{\text{and}}\;\cos $ as
\[
\Rightarrow 1 - \dfrac{1}{{\dfrac{1}{{\cos x}}}} = \dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{1}{{\cos
x}}}} \\
\Rightarrow 1 - \cos x = \sin x \\
\Rightarrow \cos x + \sin x = 1 \\
\]
Now, in order to make this equation comparable to compound trigonometric formula, we will divide it
by $ \sqrt {{{(coefficient\;of\;\sin x)}^2} + {{(coefficient\;of\;\cos x)}^2}} $
\[
\Rightarrow \cos x + \sin x = 1 \\
\Rightarrow \dfrac{{\cos x + \sin x}}{{\sqrt {{1^2} + {1^2}} }} = \dfrac{1}{{\sqrt {{1^2} + {1^2}} }}
\\
\Rightarrow \dfrac{{\cos x + \sin x}}{{\sqrt {1 + 1} }} = \dfrac{1}{{\sqrt {1 + 1} }} \\
\Rightarrow \dfrac{{\cos x + \sin x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow \dfrac{{\cos x}}{{\sqrt 2 }} + \dfrac{{\sin x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \\
\]
Now we all know that \[\cos \dfrac{\pi }{4} = \sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\] , so replacing
$ \dfrac{1}{{\sqrt 2 }} $ with $ \cos \dfrac{\pi }{4}\;{\text{and}}\;\sin \dfrac{\pi }{4} $ , we will get
$ \Rightarrow \cos x\cos \dfrac{\pi }{4} + \sin x\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} $
We have seen this type of equation before, do you remember where?
We have seen this type of trigonometric equation before in the compound angle formula of
trigonometric identities. Now, this becomes a trigonometric identity which is similar to this
$ \cos x\cos y + \sin x\sin y = \cos (x - y) $
Now using the cosine formula of compound angle to solve further, we can write it as
$
\Rightarrow \cos x\cos \dfrac{\pi }{4} + \sin x\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow \cos (x - \dfrac{\pi }{4}) = \dfrac{1}{{\sqrt 2 }} \\
$
Now we know the general solution of $ \cos \theta = \dfrac{1}{{\sqrt 2 }} $ , which is $ x = 2n\pi \pm
\dfrac{\pi }{4},\;{\text{where}}\;n \in I $
\[
\Rightarrow \cos \left( {x - \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow x - \dfrac{\pi }{4} = 2n\pi \pm \dfrac{\pi }{4},\;{\text{where}}\;n \in I \\
\Rightarrow x = 2n\pi \pm \dfrac{\pi }{4} + \dfrac{\pi }{4},\;{\text{where}}\;n \in I \\
\]
Checking for $ x = 2n\pi + \dfrac{\pi }{4} + \dfrac{\pi }{4} = 2n\pi + \dfrac{\pi }{2} $ here $ \sec x $ and
$ \tan x $ are undefined.
Checking for $ x = 2n\pi - \dfrac{\pi }{4} + \dfrac{\pi }{4} = 2n\pi $ , $ \sec x = 1 $ and $ \tan x = 0 $ which
is satisfying $ \sec x - 1 = \tan x $
$ \therefore $ required solution is $ x = 2n\pi $
Note: We can solve it by one more method,
Given $ \sec x - 1 = \tan x $
$ \Rightarrow \sec x - \tan x = 1 $ _____(I)
We know that $ {\sec ^2}x - {\tan ^2}x = 1 $
$
\Rightarrow {\sec ^2}x - {\tan ^2}x = 1 \\
\Rightarrow (\sec x + \tan x)(\sec x - \tan x) = 1 \\
$
Now using equation (I) and substituting the value of $ \sec x - \tan x = 1 $ in above equation in order to solve further
\[ \Rightarrow (\sec x + \tan x) \times 1 = 1\]
$ \Rightarrow \sec x + \tan x = 1 $ ______(II)
Now adding equation (I) and (II) we will get,
$
\Rightarrow \sec x - \tan x + \sec x + \tan x = 1 + 1 \\
\Rightarrow 2\sec x = 2 \\
\Rightarrow \sec x = \dfrac{2}{2} \\
\Rightarrow \sec x = 1 \\
$
Now we know that $ \sec x = \dfrac{1}{{\cos x}}\; $
$
\Rightarrow \sec x = 1 \\
\Rightarrow \dfrac{1}{{\cos x}} = 1 \\
\Rightarrow 1 = \cos x \\
$
Now we know the general solution for $ \cos x = 1 $ is $ 2n\pi $ , where \[n \in I\]
$ \therefore $ required solution is $ x = 2n\pi $
Complete step by step solution:
Given $ \sec x - 1 = \tan x $ , we have to convert it into $ \sin
\;{\text{and}}\;\cos $ form, to do this we will divide both sides with $ \sec x $
\[
\Rightarrow \sec x - 1 = \tan x \\
\Rightarrow \dfrac{{\sec x - 1}}{{\sec x}} = \dfrac{{\tan x}}{{\sec x}} \\
\Rightarrow \dfrac{{\sec x}}{{\sec x}} - \dfrac{1}{{\sec x}} = \dfrac{{\tan x}}{{\sec x}} \\
\Rightarrow 1 - \dfrac{1}{{\sec x}} = \dfrac{{\tan x}}{{\sec x}} \\
\]
Now we know that $ \sec x = \dfrac{1}{{\cos x}}\;\& \;\tan x = \dfrac{{\sin x}}{{\cos x}} $ , so replacing
them with $ \sin \;{\text{and}}\;\cos $ as
\[
\Rightarrow 1 - \dfrac{1}{{\dfrac{1}{{\cos x}}}} = \dfrac{{\dfrac{{\sin x}}{{\cos x}}}}{{\dfrac{1}{{\cos
x}}}} \\
\Rightarrow 1 - \cos x = \sin x \\
\Rightarrow \cos x + \sin x = 1 \\
\]
Now, in order to make this equation comparable to compound trigonometric formula, we will divide it
by $ \sqrt {{{(coefficient\;of\;\sin x)}^2} + {{(coefficient\;of\;\cos x)}^2}} $
\[
\Rightarrow \cos x + \sin x = 1 \\
\Rightarrow \dfrac{{\cos x + \sin x}}{{\sqrt {{1^2} + {1^2}} }} = \dfrac{1}{{\sqrt {{1^2} + {1^2}} }}
\\
\Rightarrow \dfrac{{\cos x + \sin x}}{{\sqrt {1 + 1} }} = \dfrac{1}{{\sqrt {1 + 1} }} \\
\Rightarrow \dfrac{{\cos x + \sin x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow \dfrac{{\cos x}}{{\sqrt 2 }} + \dfrac{{\sin x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \\
\]
Now we all know that \[\cos \dfrac{\pi }{4} = \sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\] , so replacing
$ \dfrac{1}{{\sqrt 2 }} $ with $ \cos \dfrac{\pi }{4}\;{\text{and}}\;\sin \dfrac{\pi }{4} $ , we will get
$ \Rightarrow \cos x\cos \dfrac{\pi }{4} + \sin x\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} $
We have seen this type of equation before, do you remember where?
We have seen this type of trigonometric equation before in the compound angle formula of
trigonometric identities. Now, this becomes a trigonometric identity which is similar to this
$ \cos x\cos y + \sin x\sin y = \cos (x - y) $
Now using the cosine formula of compound angle to solve further, we can write it as
$
\Rightarrow \cos x\cos \dfrac{\pi }{4} + \sin x\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow \cos (x - \dfrac{\pi }{4}) = \dfrac{1}{{\sqrt 2 }} \\
$
Now we know the general solution of $ \cos \theta = \dfrac{1}{{\sqrt 2 }} $ , which is $ x = 2n\pi \pm
\dfrac{\pi }{4},\;{\text{where}}\;n \in I $
\[
\Rightarrow \cos \left( {x - \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow x - \dfrac{\pi }{4} = 2n\pi \pm \dfrac{\pi }{4},\;{\text{where}}\;n \in I \\
\Rightarrow x = 2n\pi \pm \dfrac{\pi }{4} + \dfrac{\pi }{4},\;{\text{where}}\;n \in I \\
\]
Checking for $ x = 2n\pi + \dfrac{\pi }{4} + \dfrac{\pi }{4} = 2n\pi + \dfrac{\pi }{2} $ here $ \sec x $ and
$ \tan x $ are undefined.
Checking for $ x = 2n\pi - \dfrac{\pi }{4} + \dfrac{\pi }{4} = 2n\pi $ , $ \sec x = 1 $ and $ \tan x = 0 $ which
is satisfying $ \sec x - 1 = \tan x $
$ \therefore $ required solution is $ x = 2n\pi $
Note: We can solve it by one more method,
Given $ \sec x - 1 = \tan x $
$ \Rightarrow \sec x - \tan x = 1 $ _____(I)
We know that $ {\sec ^2}x - {\tan ^2}x = 1 $
$
\Rightarrow {\sec ^2}x - {\tan ^2}x = 1 \\
\Rightarrow (\sec x + \tan x)(\sec x - \tan x) = 1 \\
$
Now using equation (I) and substituting the value of $ \sec x - \tan x = 1 $ in above equation in order to solve further
\[ \Rightarrow (\sec x + \tan x) \times 1 = 1\]
$ \Rightarrow \sec x + \tan x = 1 $ ______(II)
Now adding equation (I) and (II) we will get,
$
\Rightarrow \sec x - \tan x + \sec x + \tan x = 1 + 1 \\
\Rightarrow 2\sec x = 2 \\
\Rightarrow \sec x = \dfrac{2}{2} \\
\Rightarrow \sec x = 1 \\
$
Now we know that $ \sec x = \dfrac{1}{{\cos x}}\; $
$
\Rightarrow \sec x = 1 \\
\Rightarrow \dfrac{1}{{\cos x}} = 1 \\
\Rightarrow 1 = \cos x \\
$
Now we know the general solution for $ \cos x = 1 $ is $ 2n\pi $ , where \[n \in I\]
$ \therefore $ required solution is $ x = 2n\pi $
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

