Answer
Verified
426.9k+ views
Hint: In this particular question we need to use basic logarithmic properties to simplify the equation. Then we need to further solve the equation and get the desired answer.
Complete step by step solution:
In the above question, it is given that,
$\log x + \log (x - 3) = 1$
(Since $\log a + \log b = \log (ab)$ )
Using the above stated property we get,
$ \Rightarrow \log (x(x - 3)) = 1$
Taking antilog on both sides of the equation we get,
$ \Rightarrow anti\log (\log (x(x - 3))) = anti\log 1$
$ \Rightarrow x(x - 3) = {10^1}$
On solving the above equation we get a quadratic equation
$ \Rightarrow {x^2} - 3x = 10$
Subtracting 10 from both sides of the equation
$ \Rightarrow {x^2} - 3x - 10 = 0$
Now solve the above quadratic equation for x
$ \Rightarrow {x^2} - 5x + 2x - 10 = 0$
$ \Rightarrow x(x - 5) + 2(x - 5) = 0$
$ \Rightarrow (x + 2)(x - 5) = 0$
This implies that either $x = - 2$or $x = 5$
As log can not be a negative value therefore the $x = - 2$ is rejected and hence $x = 5$ is the required solution to the above logarithmic equation.
Note:
Remember to recall the basic logarithmic properties to solve the above question. Note that
$
\log x = 1 \\
\Rightarrow x = {10^1} \\
\Rightarrow x = 10 \\
$
The basic logarithmic algebra includes the following properties:
$
\log a + \log b = \log (ab) \\
\log a - \log b = \log \left( {\dfrac{a}{b}} \right) \\
\log {a^b} = b\log a \\
{\log _a}a = 1 \\
$
Complete step by step solution:
In the above question, it is given that,
$\log x + \log (x - 3) = 1$
(Since $\log a + \log b = \log (ab)$ )
Using the above stated property we get,
$ \Rightarrow \log (x(x - 3)) = 1$
Taking antilog on both sides of the equation we get,
$ \Rightarrow anti\log (\log (x(x - 3))) = anti\log 1$
$ \Rightarrow x(x - 3) = {10^1}$
On solving the above equation we get a quadratic equation
$ \Rightarrow {x^2} - 3x = 10$
Subtracting 10 from both sides of the equation
$ \Rightarrow {x^2} - 3x - 10 = 0$
Now solve the above quadratic equation for x
$ \Rightarrow {x^2} - 5x + 2x - 10 = 0$
$ \Rightarrow x(x - 5) + 2(x - 5) = 0$
$ \Rightarrow (x + 2)(x - 5) = 0$
This implies that either $x = - 2$or $x = 5$
As log can not be a negative value therefore the $x = - 2$ is rejected and hence $x = 5$ is the required solution to the above logarithmic equation.
Note:
Remember to recall the basic logarithmic properties to solve the above question. Note that
$
\log x = 1 \\
\Rightarrow x = {10^1} \\
\Rightarrow x = 10 \\
$
The basic logarithmic algebra includes the following properties:
$
\log a + \log b = \log (ab) \\
\log a - \log b = \log \left( {\dfrac{a}{b}} \right) \\
\log {a^b} = b\log a \\
{\log _a}a = 1 \\
$
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE