
How do you solve ${{\left( 3x-4 \right)}^{2}}=42$?
Answer
551.7k+ views
Hint: We first try to explain the concept of factorisation and the ways a factorisation of a polynomial can be done. We use the identity theorem of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ to factor the given polynomial ${{\left( 3x-4 \right)}^{2}}=42$. We assume the values of $a=\left( 3x-4 \right);b=\sqrt{42}$. The final multiplied linear polynomials are the solution of the problem.
Complete step by step answer:
The main condition of factorisation is to break the given number or function or polynomial into multiple of basic primary numbers or polynomials.
For the process of factorisation, we use the concept of common elements or identities to convert into multiplication form.
For the factorisation of the given quadratic polynomial ${{\left( 3x-4 \right)}^{2}}-42=0$, we apply the factorisation identity of difference of two squares as ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
We get ${{\left( 3x-4 \right)}^{2}}-42={{\left( 3x-4 \right)}^{2}}-{{\left( \sqrt{42} \right)}^{2}}$. We put the value of $a=\left( 3x-4 \right);b=\sqrt{42}$.
Factorisation of the polynomial gives us
${{\left( 3x-4 \right)}^{2}}-42={{\left( 3x-4 \right)}^{2}}-{{\left( \sqrt{42} \right)}^{2}}=\left( 3x-4+\sqrt{42} \right)\left( 3x-4-\sqrt{42} \right)$.
These two multiplied linear polynomials can’t be broken any more.
Therefore, the final factorisation of ${{\left( 3x-4 \right)}^{2}}-42$ is $\left( 3x-4+\sqrt{42} \right)\left( 3x-4-\sqrt{42} \right)$.
Therefore, we get $\left( 3x-4+\sqrt{42} \right)\left( 3x-4-\sqrt{42} \right)=0$. Multiplied form of two polynomials gives 0 which gives individual terms to be 0.
Therefore, either $\left( 3x-4+\sqrt{42} \right)$ is 0 or $\left( 3x-4-\sqrt{42} \right)$ is 0.
The solutions are $3x-4=\pm \sqrt{42}$ which gives $x=\dfrac{4\pm \sqrt{42}}{3}$.
Note: We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
We first simplify the equation ${{\left( 3x-4 \right)}^{2}}=42$. We get
$\begin{align}
& {{\left( 3x-4 \right)}^{2}}=42 \\
& \Rightarrow 9{{x}^{2}}+16-24x=42 \\
& \Rightarrow 9{{x}^{2}}-24x-26=0 \\
\end{align}$
In the given equation we have $9{{x}^{2}}-24x-26=0$. The values of a, b, c are $9,-24,-26$ respectively. We put the values and get
\[x=\dfrac{-\left( -24 \right)\pm \sqrt{{{\left( -24 \right)}^{2}}-4\times 9\times \left( -26 \right)}}{2\times 9}=\dfrac{24\pm \sqrt{1512}}{18}=\dfrac{24\pm 6\sqrt{42}}{18}=\dfrac{4\pm \sqrt{42}}{3}\].
Complete step by step answer:
The main condition of factorisation is to break the given number or function or polynomial into multiple of basic primary numbers or polynomials.
For the process of factorisation, we use the concept of common elements or identities to convert into multiplication form.
For the factorisation of the given quadratic polynomial ${{\left( 3x-4 \right)}^{2}}-42=0$, we apply the factorisation identity of difference of two squares as ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
We get ${{\left( 3x-4 \right)}^{2}}-42={{\left( 3x-4 \right)}^{2}}-{{\left( \sqrt{42} \right)}^{2}}$. We put the value of $a=\left( 3x-4 \right);b=\sqrt{42}$.
Factorisation of the polynomial gives us
${{\left( 3x-4 \right)}^{2}}-42={{\left( 3x-4 \right)}^{2}}-{{\left( \sqrt{42} \right)}^{2}}=\left( 3x-4+\sqrt{42} \right)\left( 3x-4-\sqrt{42} \right)$.
These two multiplied linear polynomials can’t be broken any more.
Therefore, the final factorisation of ${{\left( 3x-4 \right)}^{2}}-42$ is $\left( 3x-4+\sqrt{42} \right)\left( 3x-4-\sqrt{42} \right)$.
Therefore, we get $\left( 3x-4+\sqrt{42} \right)\left( 3x-4-\sqrt{42} \right)=0$. Multiplied form of two polynomials gives 0 which gives individual terms to be 0.
Therefore, either $\left( 3x-4+\sqrt{42} \right)$ is 0 or $\left( 3x-4-\sqrt{42} \right)$ is 0.
The solutions are $3x-4=\pm \sqrt{42}$ which gives $x=\dfrac{4\pm \sqrt{42}}{3}$.
Note: We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
We first simplify the equation ${{\left( 3x-4 \right)}^{2}}=42$. We get
$\begin{align}
& {{\left( 3x-4 \right)}^{2}}=42 \\
& \Rightarrow 9{{x}^{2}}+16-24x=42 \\
& \Rightarrow 9{{x}^{2}}-24x-26=0 \\
\end{align}$
In the given equation we have $9{{x}^{2}}-24x-26=0$. The values of a, b, c are $9,-24,-26$ respectively. We put the values and get
\[x=\dfrac{-\left( -24 \right)\pm \sqrt{{{\left( -24 \right)}^{2}}-4\times 9\times \left( -26 \right)}}{2\times 9}=\dfrac{24\pm \sqrt{1512}}{18}=\dfrac{24\pm 6\sqrt{42}}{18}=\dfrac{4\pm \sqrt{42}}{3}\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Who gave "Inqilab Zindabad" slogan?

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

