
How do you solve ${{\left( 3x-4 \right)}^{2}}=42$?
Answer
526.2k+ views
Hint: We first try to explain the concept of factorisation and the ways a factorisation of a polynomial can be done. We use the identity theorem of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ to factor the given polynomial ${{\left( 3x-4 \right)}^{2}}=42$. We assume the values of $a=\left( 3x-4 \right);b=\sqrt{42}$. The final multiplied linear polynomials are the solution of the problem.
Complete step by step answer:
The main condition of factorisation is to break the given number or function or polynomial into multiple of basic primary numbers or polynomials.
For the process of factorisation, we use the concept of common elements or identities to convert into multiplication form.
For the factorisation of the given quadratic polynomial ${{\left( 3x-4 \right)}^{2}}-42=0$, we apply the factorisation identity of difference of two squares as ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
We get ${{\left( 3x-4 \right)}^{2}}-42={{\left( 3x-4 \right)}^{2}}-{{\left( \sqrt{42} \right)}^{2}}$. We put the value of $a=\left( 3x-4 \right);b=\sqrt{42}$.
Factorisation of the polynomial gives us
${{\left( 3x-4 \right)}^{2}}-42={{\left( 3x-4 \right)}^{2}}-{{\left( \sqrt{42} \right)}^{2}}=\left( 3x-4+\sqrt{42} \right)\left( 3x-4-\sqrt{42} \right)$.
These two multiplied linear polynomials can’t be broken any more.
Therefore, the final factorisation of ${{\left( 3x-4 \right)}^{2}}-42$ is $\left( 3x-4+\sqrt{42} \right)\left( 3x-4-\sqrt{42} \right)$.
Therefore, we get $\left( 3x-4+\sqrt{42} \right)\left( 3x-4-\sqrt{42} \right)=0$. Multiplied form of two polynomials gives 0 which gives individual terms to be 0.
Therefore, either $\left( 3x-4+\sqrt{42} \right)$ is 0 or $\left( 3x-4-\sqrt{42} \right)$ is 0.
The solutions are $3x-4=\pm \sqrt{42}$ which gives $x=\dfrac{4\pm \sqrt{42}}{3}$.
Note: We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
We first simplify the equation ${{\left( 3x-4 \right)}^{2}}=42$. We get
$\begin{align}
& {{\left( 3x-4 \right)}^{2}}=42 \\
& \Rightarrow 9{{x}^{2}}+16-24x=42 \\
& \Rightarrow 9{{x}^{2}}-24x-26=0 \\
\end{align}$
In the given equation we have $9{{x}^{2}}-24x-26=0$. The values of a, b, c are $9,-24,-26$ respectively. We put the values and get
\[x=\dfrac{-\left( -24 \right)\pm \sqrt{{{\left( -24 \right)}^{2}}-4\times 9\times \left( -26 \right)}}{2\times 9}=\dfrac{24\pm \sqrt{1512}}{18}=\dfrac{24\pm 6\sqrt{42}}{18}=\dfrac{4\pm \sqrt{42}}{3}\].
Complete step by step answer:
The main condition of factorisation is to break the given number or function or polynomial into multiple of basic primary numbers or polynomials.
For the process of factorisation, we use the concept of common elements or identities to convert into multiplication form.
For the factorisation of the given quadratic polynomial ${{\left( 3x-4 \right)}^{2}}-42=0$, we apply the factorisation identity of difference of two squares as ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
We get ${{\left( 3x-4 \right)}^{2}}-42={{\left( 3x-4 \right)}^{2}}-{{\left( \sqrt{42} \right)}^{2}}$. We put the value of $a=\left( 3x-4 \right);b=\sqrt{42}$.
Factorisation of the polynomial gives us
${{\left( 3x-4 \right)}^{2}}-42={{\left( 3x-4 \right)}^{2}}-{{\left( \sqrt{42} \right)}^{2}}=\left( 3x-4+\sqrt{42} \right)\left( 3x-4-\sqrt{42} \right)$.
These two multiplied linear polynomials can’t be broken any more.
Therefore, the final factorisation of ${{\left( 3x-4 \right)}^{2}}-42$ is $\left( 3x-4+\sqrt{42} \right)\left( 3x-4-\sqrt{42} \right)$.
Therefore, we get $\left( 3x-4+\sqrt{42} \right)\left( 3x-4-\sqrt{42} \right)=0$. Multiplied form of two polynomials gives 0 which gives individual terms to be 0.
Therefore, either $\left( 3x-4+\sqrt{42} \right)$ is 0 or $\left( 3x-4-\sqrt{42} \right)$ is 0.
The solutions are $3x-4=\pm \sqrt{42}$ which gives $x=\dfrac{4\pm \sqrt{42}}{3}$.
Note: We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
We first simplify the equation ${{\left( 3x-4 \right)}^{2}}=42$. We get
$\begin{align}
& {{\left( 3x-4 \right)}^{2}}=42 \\
& \Rightarrow 9{{x}^{2}}+16-24x=42 \\
& \Rightarrow 9{{x}^{2}}-24x-26=0 \\
\end{align}$
In the given equation we have $9{{x}^{2}}-24x-26=0$. The values of a, b, c are $9,-24,-26$ respectively. We put the values and get
\[x=\dfrac{-\left( -24 \right)\pm \sqrt{{{\left( -24 \right)}^{2}}-4\times 9\times \left( -26 \right)}}{2\times 9}=\dfrac{24\pm \sqrt{1512}}{18}=\dfrac{24\pm 6\sqrt{42}}{18}=\dfrac{4\pm \sqrt{42}}{3}\].
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Our national song Vande Mataram was taken from which class 10 social science CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

