
How do you solve $5(x - 9) = - 15$?
Answer
556.2k+ views
Hint:In order to determine the value of variable $x$ in the above equation, divide both sides of the equation with the number 5 and use the rules of transposing terms to transpose terms having $(x)$ on the Left-hand side and constant value terms on the Right-Hand side of the equation. Solving like terms will lead to your required result.
Complete step by step solution:
We are given a linear equation in one variable $5(x - 9) = - 15$ and we have to solve this equation for variable ($x$).
$ \Rightarrow 5(x - 9) = - 15$
Dividing both sides of the equation with the number $5$,we get
$
\Rightarrow \dfrac{5}{5}(x - 9) = - \dfrac{{15}}{5} \\
\Rightarrow x - 9 = - 3 \\
$
Now combining like terms on both of the sides. Terms having $x$ will on the Left-Hand side of the equation and constant terms on the right-hand side.
Let’s recall one basic property of transposing terms that on transposing any term from one side to another the sign of that term gets reversed .In our case,$ - 9$ on the left hand side will become $ + 9$ on the right hand side .
After transposing terms our equation becomes
$ \Rightarrow x = - 3 + 9$
Now, solving the Right-hand side, the value of $x$is
$ \Rightarrow x = 6$
Therefore, the solution to the equation $5(x - 9) = - 15$is equal to \[x = 6\].
Additional Information:
Linear Equation: A linear equation is a equation which can be represented in the form of $ax + c$ where $x$ is the unknown variable and a,c are the numbers known where $a \ne 0$.If $a = 0 $then the equation will become a constant value and will no more be a linear equation. The degree of the variable in the linear equation is of the order 1.
Every Linear equation has 1 root.
Note:
1. One must be careful while calculating the answer as calculation error may come.
2.Distributive proper is also known as the distributive law of multiplication or division.
Complete step by step solution:
We are given a linear equation in one variable $5(x - 9) = - 15$ and we have to solve this equation for variable ($x$).
$ \Rightarrow 5(x - 9) = - 15$
Dividing both sides of the equation with the number $5$,we get
$
\Rightarrow \dfrac{5}{5}(x - 9) = - \dfrac{{15}}{5} \\
\Rightarrow x - 9 = - 3 \\
$
Now combining like terms on both of the sides. Terms having $x$ will on the Left-Hand side of the equation and constant terms on the right-hand side.
Let’s recall one basic property of transposing terms that on transposing any term from one side to another the sign of that term gets reversed .In our case,$ - 9$ on the left hand side will become $ + 9$ on the right hand side .
After transposing terms our equation becomes
$ \Rightarrow x = - 3 + 9$
Now, solving the Right-hand side, the value of $x$is
$ \Rightarrow x = 6$
Therefore, the solution to the equation $5(x - 9) = - 15$is equal to \[x = 6\].
Additional Information:
Linear Equation: A linear equation is a equation which can be represented in the form of $ax + c$ where $x$ is the unknown variable and a,c are the numbers known where $a \ne 0$.If $a = 0 $then the equation will become a constant value and will no more be a linear equation. The degree of the variable in the linear equation is of the order 1.
Every Linear equation has 1 root.
Note:
1. One must be careful while calculating the answer as calculation error may come.
2.Distributive proper is also known as the distributive law of multiplication or division.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

