
How do you solve \[4\left( y-3 \right)=48\]?
Answer
525.9k+ views
Hint: The degree of an equation is the highest power of the variable in it. We can say whether an equation is linear or quadratic or any other polynomial equation from the degree of the equation. If the degree of the equation equals one, then the equation is linear. To solve a linear equation, we need to take all the variable terms to one side of the equation and constants to the other side of the equation. We will do the same for the given equation also.
Complete step by step solution:
The equation we are asked to solve is \[4\left( y-3 \right)=48\]. As we can see that the degree of this equation is one. Hence, it is a linear equation. We know that to solve a linear equation, we need to take all the variable terms to one side of the equation and constants to the other side of the equation. We will do the same for the given equation also.
\[4\left( y-3 \right)=48\]
Dividing both sides of the above equation by 4, we get
\[\Rightarrow \dfrac{4\left( y-3 \right)}{4}=\dfrac{48}{4}\]
\[\Rightarrow y-3=12\]
Adding 3 to both sides of the above equation, we get
\[\Rightarrow y=15\]
Hence, the solution of the given equation is \[y=15\].
Note: We can check if the solution is correct or not by substituting the value in the given equation. The left-hand side of the given equation is \[4\left( y-3 \right)\], and the right-hand side of the equation is 48.
Substituting \[y=15\] in the LHS of the equation, we get
\[\begin{align}
& \Rightarrow LHS=4\left( 15-3 \right)=4\left( 12 \right) \\
& \Rightarrow LHS=48=RHS \\
& \therefore LHS=RHS \\
\end{align}\]
Thus, as the value satisfies the equation, the solution is correct.
Complete step by step solution:
The equation we are asked to solve is \[4\left( y-3 \right)=48\]. As we can see that the degree of this equation is one. Hence, it is a linear equation. We know that to solve a linear equation, we need to take all the variable terms to one side of the equation and constants to the other side of the equation. We will do the same for the given equation also.
\[4\left( y-3 \right)=48\]
Dividing both sides of the above equation by 4, we get
\[\Rightarrow \dfrac{4\left( y-3 \right)}{4}=\dfrac{48}{4}\]
\[\Rightarrow y-3=12\]
Adding 3 to both sides of the above equation, we get
\[\Rightarrow y=15\]
Hence, the solution of the given equation is \[y=15\].
Note: We can check if the solution is correct or not by substituting the value in the given equation. The left-hand side of the given equation is \[4\left( y-3 \right)\], and the right-hand side of the equation is 48.
Substituting \[y=15\] in the LHS of the equation, we get
\[\begin{align}
& \Rightarrow LHS=4\left( 15-3 \right)=4\left( 12 \right) \\
& \Rightarrow LHS=48=RHS \\
& \therefore LHS=RHS \\
\end{align}\]
Thus, as the value satisfies the equation, the solution is correct.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What is 1 divided by 0 class 8 maths CBSE

Advantages and disadvantages of science

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Write a letter to your class teacher asking for 2 days class 8 english CBSE

The past tense of Cut is Cutted A Yes B No class 8 english CBSE


