
How do you solve \[3{\tan ^2}x - 1 = 0\]?
Answer
533.4k+ views
Hint: In this question we have to solve the equation for $ x $ , first take all constant terms to one side, take out the square root, then by using trigonometric ratios we will get the equation in the form of $ \tan x = \tan \theta $ , we know that the general solution of $ \tan x = \tan \theta $ is $ x = n\pi + \theta $ , where $ n \in Z $ $ $ (i.e., $ n = 0 $ , $ \pm 1 $ , $ \pm 2 $ , $ \pm 3 $ ,…….) and $ \theta \in \left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right) $ now by substituting the values we will get the required result.
Complete step by step solution:
Given equation is \[3{\tan ^2}x - 1 = 0\],
First add 1 to both sides of the equation we get,
\[ \Rightarrow 3{\tan ^2}x - 1 + 1 = 0 + 1\],
Now simplifying we get,
\[ \Rightarrow 3{\tan ^2}x = 1\],
Now first divide both sides with 3 we get,
$ \Rightarrow \dfrac{{3{{\tan }^2}x}}{3} = \dfrac{1}{3} $ ,
Now simplifying we get,
$ \Rightarrow {\tan ^2}x = \dfrac{1}{3} $ ,
Now taking out the square root we get,
$ \Rightarrow \tan x = \pm \sqrt {\dfrac{1}{3}} $ ,
Again simplifying we get,
$ \Rightarrow \tan x = \pm \dfrac{1}{{\sqrt 3 }} $ ,
Now the values for $ \tan x $ are $ \dfrac{1}{{\sqrt 3 }} $ and $ - \dfrac{1}{{\sqrt 3 }} $ ,
Take first value i.e..,
$ \Rightarrow \tan x = \dfrac{1}{{\sqrt 3 }} $ ,
Now using trigonometric ratio table we get, $ \tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }} $ , so write $ \dfrac{1}{{\sqrt 3 }} $ as $ \tan \dfrac{\pi }{6} $ , we get,
$ \Rightarrow \tan x = \tan \dfrac{\pi }{6} $ ,
So, now using the fact that the general solution of $ \tan x = \tan \theta $ is $ x = n\pi + \theta $ , where $ n \in Z $ $ $ (i.e., $ n = 0 $ , $ \pm 1 $ , $ \pm 2 $ , $ \pm 3 $ ,…….) and $ \theta \in \left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right) $ ,
Now, by substituting the values, here $ \theta = \dfrac{\pi }{6} $ , in the general solution we get,
$ \Rightarrow x = n\pi + \dfrac{\pi }{6} $ ,
Take second value i.e..,
$ \Rightarrow \tan x = - \dfrac{1}{{\sqrt 3 }} $ ,
Now using trigonometric ratio table we get, \[\tan \left( { - \dfrac{\pi }{6}} \right) = - \dfrac{1}{{\sqrt 3 }}\], so write $ - \dfrac{1}{{\sqrt 3 }} $ as $ \tan \left( { - \dfrac{\pi }{6}} \right) $ , we get,
$ \Rightarrow \tan x = \tan \left( { - \dfrac{\pi }{6}} \right) $ ,
Since tan will have negative value in second and fourth quadrant, we can write the angle as,
$ \Rightarrow \tan x = \tan \left( {\pi - \dfrac{\pi }{6}} \right) $ ,
Now simplifying we get,
$ \Rightarrow \tan x = \tan \left( {\dfrac{{5\pi }}{6}} \right) $ ,
So, now using the fact that the general solution of $ \tan x = \tan \theta $ is $ x = n\pi + \theta $ , where $ n \in Z $ $ $ (i.e., $ n = 0 $ , $ \pm 1 $ , $ \pm 2 $ , $ \pm 3 $ ,…….) and $ \theta \in \left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right) $ ,
Now, by substituting the values, here $ \theta = \dfrac{{5\pi }}{6} $ , in the general solution we get,
$ \Rightarrow x = n\pi + \dfrac{{5\pi }}{6} $ ,
So, the general solutions are $ x = n\pi + \dfrac{\pi }{6} $ and $ x = n\pi + \dfrac{{5\pi }}{6} $ .
$ \therefore $ The general solution for the given function i.e., \[3{\tan ^2}x - 1 = 0\]will be equal to $ x = n\pi + \dfrac{\pi }{6} $ and $ x = n\pi + \dfrac{{5\pi }}{6} $ .
Note: Trigonometric equations are those equations that involve the trigonometric functions as a variable. Principal solutions are those solutions that lie in the interval $ \left[ {0,2\pi } \right] $ of such trigonometric equations, and trigonometric equation will also have general solution expressing all the values which would satisfy the given equation and it is expressed in a generalised form in terms of ‘n’.
Complete step by step solution:
Given equation is \[3{\tan ^2}x - 1 = 0\],
First add 1 to both sides of the equation we get,
\[ \Rightarrow 3{\tan ^2}x - 1 + 1 = 0 + 1\],
Now simplifying we get,
\[ \Rightarrow 3{\tan ^2}x = 1\],
Now first divide both sides with 3 we get,
$ \Rightarrow \dfrac{{3{{\tan }^2}x}}{3} = \dfrac{1}{3} $ ,
Now simplifying we get,
$ \Rightarrow {\tan ^2}x = \dfrac{1}{3} $ ,
Now taking out the square root we get,
$ \Rightarrow \tan x = \pm \sqrt {\dfrac{1}{3}} $ ,
Again simplifying we get,
$ \Rightarrow \tan x = \pm \dfrac{1}{{\sqrt 3 }} $ ,
Now the values for $ \tan x $ are $ \dfrac{1}{{\sqrt 3 }} $ and $ - \dfrac{1}{{\sqrt 3 }} $ ,
Take first value i.e..,
$ \Rightarrow \tan x = \dfrac{1}{{\sqrt 3 }} $ ,
Now using trigonometric ratio table we get, $ \tan \dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }} $ , so write $ \dfrac{1}{{\sqrt 3 }} $ as $ \tan \dfrac{\pi }{6} $ , we get,
$ \Rightarrow \tan x = \tan \dfrac{\pi }{6} $ ,
So, now using the fact that the general solution of $ \tan x = \tan \theta $ is $ x = n\pi + \theta $ , where $ n \in Z $ $ $ (i.e., $ n = 0 $ , $ \pm 1 $ , $ \pm 2 $ , $ \pm 3 $ ,…….) and $ \theta \in \left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right) $ ,
Now, by substituting the values, here $ \theta = \dfrac{\pi }{6} $ , in the general solution we get,
$ \Rightarrow x = n\pi + \dfrac{\pi }{6} $ ,
Take second value i.e..,
$ \Rightarrow \tan x = - \dfrac{1}{{\sqrt 3 }} $ ,
Now using trigonometric ratio table we get, \[\tan \left( { - \dfrac{\pi }{6}} \right) = - \dfrac{1}{{\sqrt 3 }}\], so write $ - \dfrac{1}{{\sqrt 3 }} $ as $ \tan \left( { - \dfrac{\pi }{6}} \right) $ , we get,
$ \Rightarrow \tan x = \tan \left( { - \dfrac{\pi }{6}} \right) $ ,
Since tan will have negative value in second and fourth quadrant, we can write the angle as,
$ \Rightarrow \tan x = \tan \left( {\pi - \dfrac{\pi }{6}} \right) $ ,
Now simplifying we get,
$ \Rightarrow \tan x = \tan \left( {\dfrac{{5\pi }}{6}} \right) $ ,
So, now using the fact that the general solution of $ \tan x = \tan \theta $ is $ x = n\pi + \theta $ , where $ n \in Z $ $ $ (i.e., $ n = 0 $ , $ \pm 1 $ , $ \pm 2 $ , $ \pm 3 $ ,…….) and $ \theta \in \left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right) $ ,
Now, by substituting the values, here $ \theta = \dfrac{{5\pi }}{6} $ , in the general solution we get,
$ \Rightarrow x = n\pi + \dfrac{{5\pi }}{6} $ ,
So, the general solutions are $ x = n\pi + \dfrac{\pi }{6} $ and $ x = n\pi + \dfrac{{5\pi }}{6} $ .
$ \therefore $ The general solution for the given function i.e., \[3{\tan ^2}x - 1 = 0\]will be equal to $ x = n\pi + \dfrac{\pi }{6} $ and $ x = n\pi + \dfrac{{5\pi }}{6} $ .
Note: Trigonometric equations are those equations that involve the trigonometric functions as a variable. Principal solutions are those solutions that lie in the interval $ \left[ {0,2\pi } \right] $ of such trigonometric equations, and trigonometric equation will also have general solution expressing all the values which would satisfy the given equation and it is expressed in a generalised form in terms of ‘n’.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

