
How do you solve $3{{\left( 5 \right)}^{2x-3}}=6$?
Answer
537.9k+ views
Hint: First of all, we need to separate the variable and the constant terms in the given equation $3{{\left( 5 \right)}^{2x-3}}=6$. For this, we have to divide both the sides of the equation by $3$ after which the equation will get reduced to ${{\left( 5 \right)}^{2x-3}}=2$. Then, to take out the variable exponent, we need to take the logarithm on both the sides of the equation to get $\left( 2x-3 \right)\log 5=\log 2$ using the logarithm property which is given by $\log {{a}^{m}}=m\log a$. The obtained equation can then be easily solved using the basic algebraic manipulations and the properties of the logarithm function to get the required solution of the given equation.
Complete step by step solution:
The equation given to us in the above question is written as
$\Rightarrow 3{{\left( 5 \right)}^{2x-3}}=6$
Firstly, in order to separate the variable and the constant terms, we divide both the sides of the above equation by $3$ to get
\[\begin{align}
& \Rightarrow \dfrac{3{{\left( 5 \right)}^{2x-3}}}{3}=\dfrac{6}{3} \\
& \Rightarrow {{\left( 5 \right)}^{2x-3}}=2 \\
\end{align}\]
Now, taking the logarithm on both the sides of the above equation, we get
$\Rightarrow \log {{\left( 5 \right)}^{2x-3}}=\log \left( 2 \right)$
Using the property of the logarithmic function which is given by $\log {{a}^{m}}=m\log a$, we can write the above equation as
$\Rightarrow \left( 2x-3 \right)\log \left( 5 \right)=\log \left( 2 \right)$
Now, on dividing both the sides of the above equation by $\log \left( 5 \right)$, we get
\[\begin{align}
& \Rightarrow \dfrac{\left( 2x-3 \right)\log \left( 5 \right)}{\log \left( 5 \right)}=\dfrac{\log \left( 2 \right)}{\log \left( 5 \right)} \\
& \Rightarrow 2x-3=\dfrac{\log \left( 2 \right)}{\log \left( 5 \right)} \\
\end{align}\]
Adding \[3\] on both the sides, we get
$\begin{align}
& \Rightarrow 2x-3+3=\dfrac{\log \left( 2 \right)}{\log \left( 5 \right)}+3 \\
& \Rightarrow 2x=\dfrac{\log \left( 2 \right)}{\log \left( 5 \right)}+3 \\
\end{align}$
Taking LCM on the RHS, we get
$\Rightarrow 2x=\dfrac{\log \left( 2 \right)+3\log \left( 5 \right)}{\log \left( 5 \right)}$
Using the logarithm property $m\log a=\log {{a}^{m}}$ we can write
\[\begin{align}
& \Rightarrow 2x=\dfrac{\log \left( 2 \right)+\log {{\left( 5 \right)}^{3}}}{\log \left( 5 \right)} \\
& \Rightarrow 2x=\dfrac{\log \left( 2 \right)+\log \left( 125 \right)}{\log \left( 5 \right)} \\
\end{align}\]
Now, using the logarithmic property given by $\log A+\log B=\log \left( AB \right)$ we can write
$\begin{align}
& \Rightarrow 2x=\dfrac{\log \left( 2\times 125 \right)}{\log \left( 5 \right)} \\
& \Rightarrow 2x=\dfrac{\log \left( 250 \right)}{\log \left( 5 \right)} \\
\end{align}$
Finally, dividing the above equation by $2$ we get
\[\begin{align}
& \Rightarrow \dfrac{2x}{2}=\dfrac{\log \left( 250 \right)}{2\log \left( 5 \right)} \\
& \Rightarrow x=\dfrac{\log \left( 250 \right)}{2\log \left( 5 \right)} \\
\end{align}\]
Again using the logarithmic property $m\log a=\log {{a}^{m}}$, we can simplify the denominator as
$\begin{align}
& \Rightarrow x=\dfrac{\log \left( 250 \right)}{\log {{\left( 5 \right)}^{2}}} \\
& \Rightarrow x=\dfrac{\log \left( 250 \right)}{\log \left( 25 \right)} \\
\end{align}$
Hence, we obtained the solution for the given equation as $\dfrac{\log \left( 250 \right)}{\log \left( 25 \right)}$.
Note: We must remember all the important properties of the logarithmic function for solving these types of equations, where the variable is an exponent. We can also apply the exponent property ${{a}^{m-n}}=\dfrac{{{a}^{m}}}{{{a}^{n}}}$ to simplify the equation as $3\left( \dfrac{{{5}^{2x}}}{{{5}^{3}}} \right)=6$. This way, we will be able to get the solution quickly.
Complete step by step solution:
The equation given to us in the above question is written as
$\Rightarrow 3{{\left( 5 \right)}^{2x-3}}=6$
Firstly, in order to separate the variable and the constant terms, we divide both the sides of the above equation by $3$ to get
\[\begin{align}
& \Rightarrow \dfrac{3{{\left( 5 \right)}^{2x-3}}}{3}=\dfrac{6}{3} \\
& \Rightarrow {{\left( 5 \right)}^{2x-3}}=2 \\
\end{align}\]
Now, taking the logarithm on both the sides of the above equation, we get
$\Rightarrow \log {{\left( 5 \right)}^{2x-3}}=\log \left( 2 \right)$
Using the property of the logarithmic function which is given by $\log {{a}^{m}}=m\log a$, we can write the above equation as
$\Rightarrow \left( 2x-3 \right)\log \left( 5 \right)=\log \left( 2 \right)$
Now, on dividing both the sides of the above equation by $\log \left( 5 \right)$, we get
\[\begin{align}
& \Rightarrow \dfrac{\left( 2x-3 \right)\log \left( 5 \right)}{\log \left( 5 \right)}=\dfrac{\log \left( 2 \right)}{\log \left( 5 \right)} \\
& \Rightarrow 2x-3=\dfrac{\log \left( 2 \right)}{\log \left( 5 \right)} \\
\end{align}\]
Adding \[3\] on both the sides, we get
$\begin{align}
& \Rightarrow 2x-3+3=\dfrac{\log \left( 2 \right)}{\log \left( 5 \right)}+3 \\
& \Rightarrow 2x=\dfrac{\log \left( 2 \right)}{\log \left( 5 \right)}+3 \\
\end{align}$
Taking LCM on the RHS, we get
$\Rightarrow 2x=\dfrac{\log \left( 2 \right)+3\log \left( 5 \right)}{\log \left( 5 \right)}$
Using the logarithm property $m\log a=\log {{a}^{m}}$ we can write
\[\begin{align}
& \Rightarrow 2x=\dfrac{\log \left( 2 \right)+\log {{\left( 5 \right)}^{3}}}{\log \left( 5 \right)} \\
& \Rightarrow 2x=\dfrac{\log \left( 2 \right)+\log \left( 125 \right)}{\log \left( 5 \right)} \\
\end{align}\]
Now, using the logarithmic property given by $\log A+\log B=\log \left( AB \right)$ we can write
$\begin{align}
& \Rightarrow 2x=\dfrac{\log \left( 2\times 125 \right)}{\log \left( 5 \right)} \\
& \Rightarrow 2x=\dfrac{\log \left( 250 \right)}{\log \left( 5 \right)} \\
\end{align}$
Finally, dividing the above equation by $2$ we get
\[\begin{align}
& \Rightarrow \dfrac{2x}{2}=\dfrac{\log \left( 250 \right)}{2\log \left( 5 \right)} \\
& \Rightarrow x=\dfrac{\log \left( 250 \right)}{2\log \left( 5 \right)} \\
\end{align}\]
Again using the logarithmic property $m\log a=\log {{a}^{m}}$, we can simplify the denominator as
$\begin{align}
& \Rightarrow x=\dfrac{\log \left( 250 \right)}{\log {{\left( 5 \right)}^{2}}} \\
& \Rightarrow x=\dfrac{\log \left( 250 \right)}{\log \left( 25 \right)} \\
\end{align}$
Hence, we obtained the solution for the given equation as $\dfrac{\log \left( 250 \right)}{\log \left( 25 \right)}$.
Note: We must remember all the important properties of the logarithmic function for solving these types of equations, where the variable is an exponent. We can also apply the exponent property ${{a}^{m-n}}=\dfrac{{{a}^{m}}}{{{a}^{n}}}$ to simplify the equation as $3\left( \dfrac{{{5}^{2x}}}{{{5}^{3}}} \right)=6$. This way, we will be able to get the solution quickly.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

