Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

How do you solve \[2x+1=8\]?

Answer
VerifiedVerified
558.9k+ views
Hint: We can solve this question with a basic linear equation concept. First we have to like terms on one side and remaining on the other side i.e., constants on one side and variables containing terms on one side. Then we have to apply basic operations to arrive at the solution. After that we can also check the answer whether the solution is correct or not.

Complete step-by-step answer:
To solve the equation we have to make the like terms at one side.
Given equation is
\[2x+1=8\]
Now to make like terms one side we have subtract \[1\] from both sides of the equation then the equation will look like
\[\Rightarrow 2x+1-1=8-1\]
By simplifying it we will get
\[\Rightarrow 2x=7\]
Now to get the value of x we have to multiply the equation with \[2\] on both sides.
Then the equation will look like
\[\Rightarrow \dfrac{2x}{2}=\dfrac{7}{2}\]
By simplifying it we will get
\[x=\dfrac{7}{2}\] or \[x=3.5\]
So by solving the equation \[2x+1=8\] we will get the value of x as
\[x=\dfrac{7}{2}\]

Note: We can also check the answer by substitution method. In this method you have to substitute the x value that is obtained in the equation and simplify it then we can see that the equation is satisfied.
While checking we have to substitute \[x=\dfrac{7}{2}\] in the equation.
\[\Rightarrow 2\left( \dfrac{7}{2} \right)+1\]
By cancelling the \[2\] we will get
\[\Rightarrow 7+1\]
\[\Rightarrow 8\]
We got \[8\] on the RHS side and we already know that on the LHS side also we have \[8\].
\[8=8\]
So we can see that the equation is satisfied.
From this we can say our answer is correct.