
How do you simplify $\dfrac{-2-5i}{3i}$ ?
Answer
554.1k+ views
Hint: To simplify the given complex number, we need to multiply the numerator and denominator by the conjugate of the denominator. Here, the conjugate of 3i is -3i, so we will multiply the numerator and denominator by -3i and simplify. Then we know that the value of ${{i}^{2}}=-1$ Hence we will substitute this in the obtained equation. Now we will simplify the expression further and write it in the form of a + ib.
Complete step by step answer:
We know that, $i=\sqrt{-1}$ , which is known as “iota” is an imaginary number. To get a real number we need to square it to remove the under-root from -1.
$\begin{align}
& \Rightarrow {{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}} \\
& \Rightarrow {{i}^{2}}=-1 \\
\end{align}$
To simplify the given expression in question we need to make the denominator a real number. For that to happen we need to multiply the numerator and denominator with the conjugate of the complex number “3i”.
To get the conjugate of a complex number, one has to change the sign of the imaginary part and let the sign of the real part remain as it is.
That means, Complex number = Real part + Imaginary part.
So, its Conjugate will be Complex number = Real part – Imaginary part.
That’s why, here we will get the conjugate of “3i” as “-3i”. So, the expression will look like
$\Rightarrow \left( \dfrac{-2-5i}{3i} \right)\times \left( \dfrac{-3i}{-3i} \right)$
or we can write it as,
$\Rightarrow \dfrac{\left( -2-5i \right)\left( -3i \right)}{\left( 3i \right)\left( -3i \right)}$
which will further give us,
$\begin{align}
& \Rightarrow \dfrac{-2\left( -3i \right)-5i\left( -3i \right)}{-9{{i}^{2}}} \\
& \Rightarrow \dfrac{6i+15{{i}^{2}}}{-9{{i}^{2}}} \\
\end{align}$
Now we know that ${{i}^{2}}=-1$ hence we get the expression as
Hence, we can write it as,
$\begin{align}
& \Rightarrow \dfrac{6i-15}{9} \\
& \Rightarrow -\dfrac{15}{9}+\dfrac{6}{9}i \\
& \Rightarrow -\dfrac{5}{3}+\dfrac{2}{3}i \\
\end{align}$
Thus, the answer is $-\dfrac{5}{3}+\dfrac{2}{3}i$ .
Note:
Now note that the conjugate of a complex number a + ib is defined as a – ib. Hence the conjugate of a pure complex number is just negative of the original number and the conjugate of a pure real number is the number itself. Also conjugate of a conjugate is the number itself.
Complete step by step answer:
We know that, $i=\sqrt{-1}$ , which is known as “iota” is an imaginary number. To get a real number we need to square it to remove the under-root from -1.
$\begin{align}
& \Rightarrow {{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}} \\
& \Rightarrow {{i}^{2}}=-1 \\
\end{align}$
To simplify the given expression in question we need to make the denominator a real number. For that to happen we need to multiply the numerator and denominator with the conjugate of the complex number “3i”.
To get the conjugate of a complex number, one has to change the sign of the imaginary part and let the sign of the real part remain as it is.
That means, Complex number = Real part + Imaginary part.
So, its Conjugate will be Complex number = Real part – Imaginary part.
That’s why, here we will get the conjugate of “3i” as “-3i”. So, the expression will look like
$\Rightarrow \left( \dfrac{-2-5i}{3i} \right)\times \left( \dfrac{-3i}{-3i} \right)$
or we can write it as,
$\Rightarrow \dfrac{\left( -2-5i \right)\left( -3i \right)}{\left( 3i \right)\left( -3i \right)}$
which will further give us,
$\begin{align}
& \Rightarrow \dfrac{-2\left( -3i \right)-5i\left( -3i \right)}{-9{{i}^{2}}} \\
& \Rightarrow \dfrac{6i+15{{i}^{2}}}{-9{{i}^{2}}} \\
\end{align}$
Now we know that ${{i}^{2}}=-1$ hence we get the expression as
Hence, we can write it as,
$\begin{align}
& \Rightarrow \dfrac{6i-15}{9} \\
& \Rightarrow -\dfrac{15}{9}+\dfrac{6}{9}i \\
& \Rightarrow -\dfrac{5}{3}+\dfrac{2}{3}i \\
\end{align}$
Thus, the answer is $-\dfrac{5}{3}+\dfrac{2}{3}i$ .
Note:
Now note that the conjugate of a complex number a + ib is defined as a – ib. Hence the conjugate of a pure complex number is just negative of the original number and the conjugate of a pure real number is the number itself. Also conjugate of a conjugate is the number itself.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

Differentiate between Food chain and Food web class 10 biology CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

My birthday is June 27 a On b Into c Between d In class 10 english CBSE

