
How do you show ${e^{it}} = \cos t + i\sin t$?
Answer
489.6k+ views
Hint: Here, in the given question, we need to show that ${e^{it}} = \cos t + i\sin t$. Here, $\cos $ and $\sin $ are trigonometric functions, $e$ = the base of natural logarithm, $i$ = imaginary unit and $t$ = angle in radians. First, we will express the exponential of a real number $x$, $\sin \theta $ and $\cos \theta $ as a sum of infinite series. As we know complex numbers are expressed as $z = a + ib$ so, we will express the exponential of a complex number $z$ in the same way as the exponential of a real number.In this, we will substitute, $z = it$ and simplify it further to get our answer.
Complete step by step answer:
The exponential of a real number $x$, written as ${e^x}$, is defined by sum of an infinite series, as follows
$ \Rightarrow {e^x} = \sum\nolimits_{k = 0}^\infty {\left( {\dfrac{{{x^k}}}{{k!}}} \right)} $
On expansion, we get
$ \Rightarrow {e^x} = 1 + x + \left( {\dfrac{{{x^2}}}{{2!}}} \right) + \left( {\dfrac{{{x^3}}}{{3!}}} \right) + \left( {\dfrac{{{x^4}}}{{4!}}} \right) + ....$
Also, $\cos \theta $ and $\sin \theta $ can be expressed as sum of infinite series as follows
$ \Rightarrow \cos \left( \theta \right) = 1 - \left( {\dfrac{{{\theta ^2}}}{{2!}}} \right) + \left( {\dfrac{{{\theta ^4}}}{{4!}}} \right) + ....$
$ \Rightarrow \sin \left( \theta \right) = \theta - \left( {\dfrac{{{\theta ^3}}}{{3!}}} \right) + \left( {\dfrac{{{\theta ^5}}}{{5!}}} \right) + ....$
(These are Taylor series).
The exponential of a complex number $z$ is written as ${e^z}$, and is defined in the same way as the exponential of a real number
$ \Rightarrow {e^z} = \sum\nolimits_{k = 0}^\infty {\left( {\dfrac{{{z^k}}}{{k!}}} \right)} $
On expansion, we get
$ \Rightarrow {e^z} = 1 + z + \left( {\dfrac{{{z^2}}}{{2!}}} \right) + \left( {\dfrac{{{z^3}}}{{3!}}} \right) + \left( {\dfrac{{{z^4}}}{{4!}}} \right) + ....$
Let $z = i.t$ in the previous relation
$ \Rightarrow {e^{i.t}} = \sum\nolimits_{k = 0}^\infty {\left( {\dfrac{{{{\left( {i.t} \right)}^k}}}{{k!}}} \right)} $
On expansion, we get
$ \Rightarrow {e^{i.t}} = 1 + \left( {i.t} \right) + \left( {\dfrac{{{{\left( {i.t} \right)}^2}}}{{2!}}} \right) + \left( {\dfrac{{{{\left( {i.t} \right)}^3}}}{{3!}}} \right) + \left( {\dfrac{{{{\left( {i.t} \right)}^4}}}{{4!}}} \right) + ....$
$ \Rightarrow {e^{it}} = 1 + it + \left( {\dfrac{{{i^2}{t^2}}}{{2!}}} \right) + \left( {\dfrac{{i.{i^2}{t^3}}}{{3!}}} \right) + \left( {\dfrac{{{{\left( {{i^2}} \right)}^2}{t^4}}}{{4!}}} \right) + ....$
As we know ${i^2} = - 1$. So, on substituting this value we get,
$ \Rightarrow {e^{it}} = 1 + it + \left( {\dfrac{{ - 1 \times {t^2}}}{{2!}}} \right) + \left( {\dfrac{{i \times - 1 \times {t^3}}}{{3!}}} \right) + \left( {\dfrac{{{{\left( { - 1} \right)}^2} \times {t^4}}}{{4!}}} \right) + ....$
On simplification, we get
$ \Rightarrow {e^{it}} = 1 + it - \left( {\dfrac{{{t^2}}}{{2!}}} \right) - \left( {\dfrac{{i \times {t^3}}}{{3!}}} \right) + \left( {\dfrac{{{t^4}}}{{4!}}} \right) + ....$
On separating the terms which have $i$ and which are without $i$ and taking $i$ as a common term, we get
$ \Rightarrow {e^{it}} = \left[ {1 - \left( {\dfrac{{{t^2}}}{{2!}}} \right) + \left( {\dfrac{{{t^4}}}{{4!}}} \right) + ....} \right] + i\left[ {t - \left( {\dfrac{{{t^3}}}{{3!}}} \right) + \left( {\dfrac{{{t^5}}}{{3!}}} \right) + ....} \right]$
As we know, $\cos \left( \theta \right) = 1 - \left( {\dfrac{{{\theta ^2}}}{{2!}}} \right) + \left( {\dfrac{{{\theta ^4}}}{{4!}}} \right) + ....$ and $\sin \left( \theta \right) = \theta - \left( {\dfrac{{{\theta ^3}}}{{3!}}} \right) + \left( {\dfrac{{{\theta ^5}}}{{5!}}} \right) + ....$. So, using this, we get
$ \Rightarrow {e^{it}} = \cos t + i\sin t$
Thus the proof concluded.
Therefore, the identity ${e^{it}} = \cos t + i\sin t$ is known as Euler’s formula.
Note: Remember that $\sin e$ and $\cos ine$ functions are actually linear combinations of exponential functions with imaginary exponents. Also, the expression $\cos x + i\sin x$ is often referred to as $\operatorname{c} isx$. Note that, $\cos x$ is a even function (i.e., $\cos \left( { - x} \right) = + \cos \left( x \right)$) and the Taylor series of $\cos x$ has only even powers and $\sin x$ is an odd function (i.e., $\sin \left( { - x} \right) = - \sin \left( x \right)$) and the Taylor series of $\sin x$ has only odd powers. Remember that when $t = \pi $, ${e^{\pi i}} = - 1$ and when $t = 2\pi $, ${e^{2\pi i}} = 1$.
Complete step by step answer:
The exponential of a real number $x$, written as ${e^x}$, is defined by sum of an infinite series, as follows
$ \Rightarrow {e^x} = \sum\nolimits_{k = 0}^\infty {\left( {\dfrac{{{x^k}}}{{k!}}} \right)} $
On expansion, we get
$ \Rightarrow {e^x} = 1 + x + \left( {\dfrac{{{x^2}}}{{2!}}} \right) + \left( {\dfrac{{{x^3}}}{{3!}}} \right) + \left( {\dfrac{{{x^4}}}{{4!}}} \right) + ....$
Also, $\cos \theta $ and $\sin \theta $ can be expressed as sum of infinite series as follows
$ \Rightarrow \cos \left( \theta \right) = 1 - \left( {\dfrac{{{\theta ^2}}}{{2!}}} \right) + \left( {\dfrac{{{\theta ^4}}}{{4!}}} \right) + ....$
$ \Rightarrow \sin \left( \theta \right) = \theta - \left( {\dfrac{{{\theta ^3}}}{{3!}}} \right) + \left( {\dfrac{{{\theta ^5}}}{{5!}}} \right) + ....$
(These are Taylor series).
The exponential of a complex number $z$ is written as ${e^z}$, and is defined in the same way as the exponential of a real number
$ \Rightarrow {e^z} = \sum\nolimits_{k = 0}^\infty {\left( {\dfrac{{{z^k}}}{{k!}}} \right)} $
On expansion, we get
$ \Rightarrow {e^z} = 1 + z + \left( {\dfrac{{{z^2}}}{{2!}}} \right) + \left( {\dfrac{{{z^3}}}{{3!}}} \right) + \left( {\dfrac{{{z^4}}}{{4!}}} \right) + ....$
Let $z = i.t$ in the previous relation
$ \Rightarrow {e^{i.t}} = \sum\nolimits_{k = 0}^\infty {\left( {\dfrac{{{{\left( {i.t} \right)}^k}}}{{k!}}} \right)} $
On expansion, we get
$ \Rightarrow {e^{i.t}} = 1 + \left( {i.t} \right) + \left( {\dfrac{{{{\left( {i.t} \right)}^2}}}{{2!}}} \right) + \left( {\dfrac{{{{\left( {i.t} \right)}^3}}}{{3!}}} \right) + \left( {\dfrac{{{{\left( {i.t} \right)}^4}}}{{4!}}} \right) + ....$
$ \Rightarrow {e^{it}} = 1 + it + \left( {\dfrac{{{i^2}{t^2}}}{{2!}}} \right) + \left( {\dfrac{{i.{i^2}{t^3}}}{{3!}}} \right) + \left( {\dfrac{{{{\left( {{i^2}} \right)}^2}{t^4}}}{{4!}}} \right) + ....$
As we know ${i^2} = - 1$. So, on substituting this value we get,
$ \Rightarrow {e^{it}} = 1 + it + \left( {\dfrac{{ - 1 \times {t^2}}}{{2!}}} \right) + \left( {\dfrac{{i \times - 1 \times {t^3}}}{{3!}}} \right) + \left( {\dfrac{{{{\left( { - 1} \right)}^2} \times {t^4}}}{{4!}}} \right) + ....$
On simplification, we get
$ \Rightarrow {e^{it}} = 1 + it - \left( {\dfrac{{{t^2}}}{{2!}}} \right) - \left( {\dfrac{{i \times {t^3}}}{{3!}}} \right) + \left( {\dfrac{{{t^4}}}{{4!}}} \right) + ....$
On separating the terms which have $i$ and which are without $i$ and taking $i$ as a common term, we get
$ \Rightarrow {e^{it}} = \left[ {1 - \left( {\dfrac{{{t^2}}}{{2!}}} \right) + \left( {\dfrac{{{t^4}}}{{4!}}} \right) + ....} \right] + i\left[ {t - \left( {\dfrac{{{t^3}}}{{3!}}} \right) + \left( {\dfrac{{{t^5}}}{{3!}}} \right) + ....} \right]$
As we know, $\cos \left( \theta \right) = 1 - \left( {\dfrac{{{\theta ^2}}}{{2!}}} \right) + \left( {\dfrac{{{\theta ^4}}}{{4!}}} \right) + ....$ and $\sin \left( \theta \right) = \theta - \left( {\dfrac{{{\theta ^3}}}{{3!}}} \right) + \left( {\dfrac{{{\theta ^5}}}{{5!}}} \right) + ....$. So, using this, we get
$ \Rightarrow {e^{it}} = \cos t + i\sin t$
Thus the proof concluded.
Therefore, the identity ${e^{it}} = \cos t + i\sin t$ is known as Euler’s formula.
Note: Remember that $\sin e$ and $\cos ine$ functions are actually linear combinations of exponential functions with imaginary exponents. Also, the expression $\cos x + i\sin x$ is often referred to as $\operatorname{c} isx$. Note that, $\cos x$ is a even function (i.e., $\cos \left( { - x} \right) = + \cos \left( x \right)$) and the Taylor series of $\cos x$ has only even powers and $\sin x$ is an odd function (i.e., $\sin \left( { - x} \right) = - \sin \left( x \right)$) and the Taylor series of $\sin x$ has only odd powers. Remember that when $t = \pi $, ${e^{\pi i}} = - 1$ and when $t = 2\pi $, ${e^{2\pi i}} = 1$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

