
How do you prove \[1 + {\cot ^2}x = {\csc ^2}x\]?
Answer
540.3k+ views
Hint: Here, we will first take into consideration the identity of the sum of squares of the sine function and cosine function. Then we will divide the equation by the square of the sine function and use the trigonometric relation to simplify the equation. Using this we will prove the given identity.
Formula used:
The formulae used for solving this question are given by
(1) \[{\sin ^2}x + {\cos ^2}x = 1\]
(2) \[\dfrac{{\cos x}}{{\sin x}} = \cot x\]
(3) \[\dfrac{1}{{\sin x}} = {\mathop{\rm cosec}\nolimits} x\]
Complete step-by-step solution:
We know the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\].
Dividing both sides of the above equation by \[{\sin ^2}x\], we get
\[\dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{{{\sin }^2}x}} = \dfrac{1}{{{{\sin }^2}x}}\]
Splitting the fraction on the left hand side of the above equation into two fractions, we get
\[\dfrac{{{{\sin }^2}x}}{{{{\sin }^2}x}} + \dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}} = \dfrac{1}{{{{\sin }^2}x}}\]
\[ \Rightarrow 1 + {\left( {\dfrac{{\cos x}}{{\sin x}}} \right)^2} = {\left( {\dfrac{1}{{\sin x}}} \right)^2}\]……………………………\[\left( 1 \right)\]
Now, we know that
\[\dfrac{{\cos x}}{{\sin x}} = \cot x\]…………………………….\[\left( 2 \right)\]
\[\dfrac{1}{{\sin x}} = {\mathop{\rm cosec}\nolimits} x\]…………………………….\[\left( 3 \right)\]
Putting equation \[\left( 2 \right)\] and \[\left( 3 \right)\] in equation \[\left( 1 \right)\], we get
\[1 + {\left( {\cot x} \right)^2} = {\left( {{\mathop{\rm cosec}\nolimits} x} \right)^2}\]
Applying the exponent on the terms, we get
\[ \Rightarrow 1 + {\cot ^2}x = cose{c^2}x\]
Hence, the given identity \[1 + {\cot ^2}x = {\csc ^2}x\] is proved.
Note:
The identity \[{\sin ^2}x + {\cos ^2}x = 1\] is useful for deriving many other important trigonometric identities too. For example, by dividing the both sides of this identity by \[{\cos ^2}x\], we can prove another important identity which is written as \[1 + {\tan ^2}x = {\sec ^2}x\]. It all depends on the right hand side of the identity to be proved that with which trigonometric term, \[{\cos ^2}x\] or \[{\sin ^2}x\], the identity is to be divided. For example, for proving the trigonometric identity \[1 + {\cot ^2}x = {\csc ^2}x\], we divided the identity by the trigonometric term \[{\sin ^2}x\] since it is a reciprocal of \[{{\mathop{\rm cosec}\nolimits} ^2}x\].
Formula used:
The formulae used for solving this question are given by
(1) \[{\sin ^2}x + {\cos ^2}x = 1\]
(2) \[\dfrac{{\cos x}}{{\sin x}} = \cot x\]
(3) \[\dfrac{1}{{\sin x}} = {\mathop{\rm cosec}\nolimits} x\]
Complete step-by-step solution:
We know the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\].
Dividing both sides of the above equation by \[{\sin ^2}x\], we get
\[\dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{{{\sin }^2}x}} = \dfrac{1}{{{{\sin }^2}x}}\]
Splitting the fraction on the left hand side of the above equation into two fractions, we get
\[\dfrac{{{{\sin }^2}x}}{{{{\sin }^2}x}} + \dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}} = \dfrac{1}{{{{\sin }^2}x}}\]
\[ \Rightarrow 1 + {\left( {\dfrac{{\cos x}}{{\sin x}}} \right)^2} = {\left( {\dfrac{1}{{\sin x}}} \right)^2}\]……………………………\[\left( 1 \right)\]
Now, we know that
\[\dfrac{{\cos x}}{{\sin x}} = \cot x\]…………………………….\[\left( 2 \right)\]
\[\dfrac{1}{{\sin x}} = {\mathop{\rm cosec}\nolimits} x\]…………………………….\[\left( 3 \right)\]
Putting equation \[\left( 2 \right)\] and \[\left( 3 \right)\] in equation \[\left( 1 \right)\], we get
\[1 + {\left( {\cot x} \right)^2} = {\left( {{\mathop{\rm cosec}\nolimits} x} \right)^2}\]
Applying the exponent on the terms, we get
\[ \Rightarrow 1 + {\cot ^2}x = cose{c^2}x\]
Hence, the given identity \[1 + {\cot ^2}x = {\csc ^2}x\] is proved.
Note:
The identity \[{\sin ^2}x + {\cos ^2}x = 1\] is useful for deriving many other important trigonometric identities too. For example, by dividing the both sides of this identity by \[{\cos ^2}x\], we can prove another important identity which is written as \[1 + {\tan ^2}x = {\sec ^2}x\]. It all depends on the right hand side of the identity to be proved that with which trigonometric term, \[{\cos ^2}x\] or \[{\sin ^2}x\], the identity is to be divided. For example, for proving the trigonometric identity \[1 + {\cot ^2}x = {\csc ^2}x\], we divided the identity by the trigonometric term \[{\sin ^2}x\] since it is a reciprocal of \[{{\mathop{\rm cosec}\nolimits} ^2}x\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

