
How do you graph $y=\tan 2x$?
Answer
555k+ views
Hint: To graph the above trigonometric function, we will first graph the trigonometric function $y=\tan x$ then the function which we have to graph has the angle two times of that of $\tan x$ so the values of x that this $\tan 2x$ will be half of that of $\tan x$ to achieve the same pattern of the graph as that of $\tan x$.
Complete step by step answer:
The trigonometric function which we have to draw on the graph is as follows:
$y=\tan 2x$
To draw the above graph, we are going to draw $y=\tan x$ first and this graph of $y=\tan x$ we already know from the standard graphs of the trigonometric functions. So, the graph of $y=\tan x$ is as follows:
Now, in the graph of $y=\tan 2x$, the values of x will be changed with respect to $\tan x$. And we have demonstrated the change as follows: We know that $\tan x=1$ is possible when $x=\dfrac{\pi }{4}$ and $\tan 2x=1$ when $2x=\dfrac{\pi }{4}$ and then the value of x is calculated by dividing 2 on both the sides of the equation in x.
$\begin{align}
& \dfrac{2x}{2}=\dfrac{\pi }{2\left( 4 \right)} \\
& \Rightarrow x=\dfrac{\pi }{8} \\
\end{align}$
As you can see that the value of x in $\tan 2x$ becomes one half of the value of x in $\tan x$.
The values of x at which $\tan 2x$ is drawn is half of the values of x at which $\tan x$ is drawn so keeping in mind this concept we are going to draw the graph of $\tan 2x$.
Hence, we have drawn the graph of $y=\tan 2x$ as follows:
Note: In the above graph of $y=\tan 2x$ , as you can see that the function becomes 0 when the value of x is around 1.5 and we know that the value of $\dfrac{\pi }{2}=1.57$ so $\tan 2x=0$ when $x=\dfrac{\pi }{2}$.
In the graph of $\tan x$, it will be 0 in the multiple of $\pi $ means when $x=\pi $ then the function becomes 0 and in the graph of $\tan 2x$, it is 0 when $x=\dfrac{\pi }{2}$ and as this value of x is half of $\pi $. Hence, we have drawn the correct graph.
Complete step by step answer:
The trigonometric function which we have to draw on the graph is as follows:
$y=\tan 2x$
To draw the above graph, we are going to draw $y=\tan x$ first and this graph of $y=\tan x$ we already know from the standard graphs of the trigonometric functions. So, the graph of $y=\tan x$ is as follows:
Now, in the graph of $y=\tan 2x$, the values of x will be changed with respect to $\tan x$. And we have demonstrated the change as follows: We know that $\tan x=1$ is possible when $x=\dfrac{\pi }{4}$ and $\tan 2x=1$ when $2x=\dfrac{\pi }{4}$ and then the value of x is calculated by dividing 2 on both the sides of the equation in x.
$\begin{align}
& \dfrac{2x}{2}=\dfrac{\pi }{2\left( 4 \right)} \\
& \Rightarrow x=\dfrac{\pi }{8} \\
\end{align}$
As you can see that the value of x in $\tan 2x$ becomes one half of the value of x in $\tan x$.
The values of x at which $\tan 2x$ is drawn is half of the values of x at which $\tan x$ is drawn so keeping in mind this concept we are going to draw the graph of $\tan 2x$.
Hence, we have drawn the graph of $y=\tan 2x$ as follows:
Note: In the above graph of $y=\tan 2x$ , as you can see that the function becomes 0 when the value of x is around 1.5 and we know that the value of $\dfrac{\pi }{2}=1.57$ so $\tan 2x=0$ when $x=\dfrac{\pi }{2}$.
In the graph of $\tan x$, it will be 0 in the multiple of $\pi $ means when $x=\pi $ then the function becomes 0 and in the graph of $\tan 2x$, it is 0 when $x=\dfrac{\pi }{2}$ and as this value of x is half of $\pi $. Hence, we have drawn the correct graph.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

