Answer
Verified
425.1k+ views
Hint: We first try to plot the graph for $y=\ln x$. Then we find the graph for $y=\ln x-1$ by lowering the graph line of $y=\ln x$ by 1 unit. The lowering or ascending of the graph is totally dependent on the use of the constant 1 in the equation of $y=\ln x-1$.
Complete step-by-step solution:
We need to plot the graph of $y=\ln x-1$.
The usual common graph which is easier to plot on the graph is $y=\ln x$.
The graph is an increasing graph with range being $\left( -\infty ,\infty \right)$.
The domain for the graph $y=\ln x$ is $\left( 0,\infty \right)$.
Now depending on the above-mentioned graph, we are going to find the graph of $y=\ln x-1$
The change between $y=\ln x$ and $y=\ln x-1$ is that for a particular value of $x$, we are going to find the value of $y$ being 1 less than the previous value for $y=\ln x$.
This means that we are going to lower the graph with respect to the previous graph line which is for $y=\ln x$ at the time of changing the graph from $y=\ln x$ to $y=\ln x-1$.
The domain for the graph $y=\ln x-1$ is $\left( 0,\infty \right)$.
The range for the graph $y=\ln x-1$ is $\left( -\infty ,\infty \right)$.
Note: We need to be careful about the change from $y=\ln x$ to $y=\ln x-1$. The lowering or ascending of the graph is dependent on the constant value that is being added. If the value is positive then graph ascends and if the value is negative then it descends.
Complete step-by-step solution:
We need to plot the graph of $y=\ln x-1$.
The usual common graph which is easier to plot on the graph is $y=\ln x$.
The graph is an increasing graph with range being $\left( -\infty ,\infty \right)$.
The domain for the graph $y=\ln x$ is $\left( 0,\infty \right)$.
Now depending on the above-mentioned graph, we are going to find the graph of $y=\ln x-1$
The change between $y=\ln x$ and $y=\ln x-1$ is that for a particular value of $x$, we are going to find the value of $y$ being 1 less than the previous value for $y=\ln x$.
This means that we are going to lower the graph with respect to the previous graph line which is for $y=\ln x$ at the time of changing the graph from $y=\ln x$ to $y=\ln x-1$.
The domain for the graph $y=\ln x-1$ is $\left( 0,\infty \right)$.
The range for the graph $y=\ln x-1$ is $\left( -\infty ,\infty \right)$.
Note: We need to be careful about the change from $y=\ln x$ to $y=\ln x-1$. The lowering or ascending of the graph is dependent on the constant value that is being added. If the value is positive then graph ascends and if the value is negative then it descends.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE