
How do you graph \[y = {x^2} - 4\] ?
Answer
544.2k+ views
Hint: Here we have to plot a graph. In this given equation by giving the values to the x like 0, 1, 2, 3, … simultaneously we get the values of y with respect to the x value. After getting the x and y values, write the coordinates of the given equation in the form of (x,y), by using the coordinates construct the required graph of the given equation.
Complete step-by-step answer:
Given equation in the form of linear equation in the form of two variables x and y
Consider the equation \[y = {x^2} - 4\]
Now, by giving the x values … -3, -2, -1, 0, 1, 2, 3, … to the above equation simultaneously we get the values of y
When we substitute the value of x=-3, then
\[ \Rightarrow y = {\left( { - 3} \right)^2} - 4\]
\[ \Rightarrow y = 9 - 4\]
\[\therefore y = 5\]
Therefore, co-ordinate \[\left( {x,y} \right) = \left( { - 3,5} \right)\]
When we substitute the value of x=-2
\[ \Rightarrow y = {\left( { - 2} \right)^2} - 4\]
\[ \Rightarrow y = 4 - 4\]
\[\therefore y = 0\]
Therefore, co-ordinate \[\left( {x,y} \right) = \left( { - 2,0} \right)\]
When we substitute the value of x=-1
\[ \Rightarrow y = {\left( { - 1} \right)^2} - 4\]
\[ \Rightarrow y = 1 - 4\]
\[\therefore y = - 3\]
Therefore, co-ordinate \[\left( {x,y} \right) = \left( { - 1, - 3} \right)\]
When we substitute the value of x=0
\[ \Rightarrow y = {\left( 0 \right)^2} - 4\]
\[ \Rightarrow y = 0 - 4\]
\[\therefore y = - 4\]
Therefore, co-ordinate \[\left( {x,y} \right) = \left( {0, - 4} \right)\]
When we substitute the value of x=1
\[ \Rightarrow y = {\left( 1 \right)^2} - 4\]
\[ \Rightarrow y = 1 - 4\]
\[\therefore y = - 3\]
Therefore, co-ordinate \[\left( {x,y} \right) = \left( {1, - 3} \right)\]
When we substitute the value of x=2
\[ \Rightarrow y = {\left( 2 \right)^2} - 4\]
\[ \Rightarrow y = 4 - 4\]
\[\therefore y = 0\]
Therefore, co-ordinate \[\left( {x,y} \right) = \left( {2,0} \right)\]
When we substitute the value of x=3, then
\[ \Rightarrow y = {\left( 3 \right)^2} - 4\]
\[ \Rightarrow y = 9 - 4\]
\[\therefore y = 5\]
Therefore, co-ordinate \[\left( {x,y} \right) = \left( {3,5} \right)\]
And so on …
Hence by substituting the value of x we have determined some of the values or points we use to plot the graph.
The coordinates can be written in table as :
Hence, the graph of the given linear equation \[y = {x^2} - 4\] represent the parabola is given by
Note: The question belongs to the concept of graph. By comparing the given equation to the equation of a line we calculate the slope and intercept. Or by choosing the value of x we can determine the value of y and then plotting the graphs for these points we obtain the result.
Complete step-by-step answer:
Given equation in the form of linear equation in the form of two variables x and y
Consider the equation \[y = {x^2} - 4\]
Now, by giving the x values … -3, -2, -1, 0, 1, 2, 3, … to the above equation simultaneously we get the values of y
When we substitute the value of x=-3, then
\[ \Rightarrow y = {\left( { - 3} \right)^2} - 4\]
\[ \Rightarrow y = 9 - 4\]
\[\therefore y = 5\]
Therefore, co-ordinate \[\left( {x,y} \right) = \left( { - 3,5} \right)\]
When we substitute the value of x=-2
\[ \Rightarrow y = {\left( { - 2} \right)^2} - 4\]
\[ \Rightarrow y = 4 - 4\]
\[\therefore y = 0\]
Therefore, co-ordinate \[\left( {x,y} \right) = \left( { - 2,0} \right)\]
When we substitute the value of x=-1
\[ \Rightarrow y = {\left( { - 1} \right)^2} - 4\]
\[ \Rightarrow y = 1 - 4\]
\[\therefore y = - 3\]
Therefore, co-ordinate \[\left( {x,y} \right) = \left( { - 1, - 3} \right)\]
When we substitute the value of x=0
\[ \Rightarrow y = {\left( 0 \right)^2} - 4\]
\[ \Rightarrow y = 0 - 4\]
\[\therefore y = - 4\]
Therefore, co-ordinate \[\left( {x,y} \right) = \left( {0, - 4} \right)\]
When we substitute the value of x=1
\[ \Rightarrow y = {\left( 1 \right)^2} - 4\]
\[ \Rightarrow y = 1 - 4\]
\[\therefore y = - 3\]
Therefore, co-ordinate \[\left( {x,y} \right) = \left( {1, - 3} \right)\]
When we substitute the value of x=2
\[ \Rightarrow y = {\left( 2 \right)^2} - 4\]
\[ \Rightarrow y = 4 - 4\]
\[\therefore y = 0\]
Therefore, co-ordinate \[\left( {x,y} \right) = \left( {2,0} \right)\]
When we substitute the value of x=3, then
\[ \Rightarrow y = {\left( 3 \right)^2} - 4\]
\[ \Rightarrow y = 9 - 4\]
\[\therefore y = 5\]
Therefore, co-ordinate \[\left( {x,y} \right) = \left( {3,5} \right)\]
And so on …
Hence by substituting the value of x we have determined some of the values or points we use to plot the graph.
The coordinates can be written in table as :
| \[x\] | \[ - 3\] | \[ - 2\] | \[ - 1\] | \[0\] | \[1\] | \[2\] | \[3\] |
| \[y\] | \[5\] | \[0\] | \[ - 3\] | \[ - 4\] | \[ - 3\] | \[0\] | \[5\] |
| \[\left( {x,y} \right)\] | \[\left( { - 3,5} \right)\] | \[\left( { - 2,0} \right)\] | \[\left( { - 1, - 3} \right)\] | \[\left( {0, - 4} \right)\] | \[\left( {1, - 3} \right)\] | \[\left( {2,0} \right)\] | \[\left( {3,5} \right)\] |
Hence, the graph of the given linear equation \[y = {x^2} - 4\] represent the parabola is given by
Note: The question belongs to the concept of graph. By comparing the given equation to the equation of a line we calculate the slope and intercept. Or by choosing the value of x we can determine the value of y and then plotting the graphs for these points we obtain the result.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW


