
How do you graph the inequality \[y > - 1\] ?
Answer
531.9k+ views
Hint:First we need to draw the graph of the equation\[y = - 1\] . We use intercept form to draw the graph. That is we find the coordinate of the given equation lying on the line of x- axis, we can find this by substituting the value of ‘y’ is equal to zero (x-intercept). Similarly we can find the coordinate of the equation lying on the line of y- axis, we can find this by substituting the value of ‘x’ equal to zero (y-intercept). After drawing the graph we can check in which region the inequality satisfies. Here if we draw \[y > - 1\] we will have a parallel line to x-axis.
Complete step by step answer:
Given, \[y > - 1\]. Now consider \[y = - 1\].
For \[y = - 1\].
Here we don’t have an ‘x’ variable in the given equation. So ‘y’ will always equal to \[ - 1\], no matter what value we put in for ‘x’, the ‘y’ is always going to be \[ - 1\]. That is,
Let’s plot a graph for these coordinates. We take scale x-axis= 1 unit = 1 units and y-axis= 1 unit = 1 units.
We expanded the point touching the intercepts. We took a coordinate above and below the equation of line (see in above graph).For \[y > - 1\], we can see in the graph that we have a straight horizontal line that crosses the y axis at \[ - 1\]. The solution is all the coordinate points above the line \[y = - 1\]. If we take coordinate points below the line the inequality won’t be satisfied. In the above graph the shaded region is the solution of the given inequality.
Note: We don’t take points lying on the line \[y = - 1\] for the inequality \[y > - 1\]. A graph shows the relation between two variable quantities, it contains two axes perpendicular to each other namely the x-axis and the y-axis. Each variable is measured along one of the axes. In the question, we are given one linear equation containing two variables namely x and y, x is measured along the x-axis and y is measured along the y-axis while tracing the given equations.
Complete step by step answer:
Given, \[y > - 1\]. Now consider \[y = - 1\].
For \[y = - 1\].
Here we don’t have an ‘x’ variable in the given equation. So ‘y’ will always equal to \[ - 1\], no matter what value we put in for ‘x’, the ‘y’ is always going to be \[ - 1\]. That is,
| \[x\] | \[1\] | \[ - 1\] | \[2\] | \[ - 2\] | \[3\] | \[ - 3\] | \[4\] | \[ - 4\] |
| \[y\] | \[ - 1\] | \[ - 1\] | \[ - 1\] | \[ - 1\] | \[ - 1\] | \[ - 1\] | \[ - 1\] | \[ - 1\] |
Let’s plot a graph for these coordinates. We take scale x-axis= 1 unit = 1 units and y-axis= 1 unit = 1 units.
We expanded the point touching the intercepts. We took a coordinate above and below the equation of line (see in above graph).For \[y > - 1\], we can see in the graph that we have a straight horizontal line that crosses the y axis at \[ - 1\]. The solution is all the coordinate points above the line \[y = - 1\]. If we take coordinate points below the line the inequality won’t be satisfied. In the above graph the shaded region is the solution of the given inequality.
Note: We don’t take points lying on the line \[y = - 1\] for the inequality \[y > - 1\]. A graph shows the relation between two variable quantities, it contains two axes perpendicular to each other namely the x-axis and the y-axis. Each variable is measured along one of the axes. In the question, we are given one linear equation containing two variables namely x and y, x is measured along the x-axis and y is measured along the y-axis while tracing the given equations.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

