
How do you find the value of \[\cot 0\]?
Answer
464.7k+ views
Hint: Real functions which relate any angle of a right angled triangle to the ratio of any two of its sides are Trigonometric functions. We can also use geometric definitions to evaluate trigonometric values. Here, it’s important that we know the sine of theta is the ratio of the opposite side to the hypotenuse and the cosine of theta is the ratio of the adjacent side (base) to the hypotenuse. Also, it is known that the ratio of cosine of theta to the sine of theta is cot of theta.
Complete step-by-step answer:
According to the given data, we need to evaluate \[\cot 0\]
If in a right angled triangle \[\theta \] represents one of its acute angle then by definition we can write
\[\sin \theta = \dfrac{{Opposite}}{{Hypotenuse}}\]
Also,\[\cos \theta = \dfrac{{Base}}{{Hypotenuse}}\]
Thereafter we know that,
\[\cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{{\cos \theta }}{{\sin \theta }} = \dfrac{{Base}}{{Opposite}}\]
Therefore,
\[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\]
\[ \Rightarrow \cot \theta = \dfrac{{\cos 0}}{{\sin 0}}\].
Hence, it is known to us that \[\cos 0 = 1\] and \[\sin 0 = 0\].
When we substitute the values in the expression we get,
\[ \Rightarrow \cot \theta = \dfrac{1}{0} = \infty \]
This gives rise to the fact that \[\cot x\] doesn't exist for \[x = n\pi \].
Hence, the value of \[\cot 0\] is not defined (Infinity).
Note: One should be careful while evaluating trigonometric values and rearranging the terms to convert from one function to the other. Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratio of any two of its sides. The widely used ones are sin, cos and tan. While the rest can be referred to as the reciprocal of the others, i.e., cosec, sec and cot respectively. If in a right angled triangle θ represents one of its acute angles then, \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\].
Complete step-by-step answer:
According to the given data, we need to evaluate \[\cot 0\]
If in a right angled triangle \[\theta \] represents one of its acute angle then by definition we can write
\[\sin \theta = \dfrac{{Opposite}}{{Hypotenuse}}\]
Also,\[\cos \theta = \dfrac{{Base}}{{Hypotenuse}}\]
Thereafter we know that,
\[\cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{{\cos \theta }}{{\sin \theta }} = \dfrac{{Base}}{{Opposite}}\]
Therefore,
\[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\]
\[ \Rightarrow \cot \theta = \dfrac{{\cos 0}}{{\sin 0}}\].
Hence, it is known to us that \[\cos 0 = 1\] and \[\sin 0 = 0\].
When we substitute the values in the expression we get,
\[ \Rightarrow \cot \theta = \dfrac{1}{0} = \infty \]
This gives rise to the fact that \[\cot x\] doesn't exist for \[x = n\pi \].
Hence, the value of \[\cot 0\] is not defined (Infinity).
Note: One should be careful while evaluating trigonometric values and rearranging the terms to convert from one function to the other. Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratio of any two of its sides. The widely used ones are sin, cos and tan. While the rest can be referred to as the reciprocal of the others, i.e., cosec, sec and cot respectively. If in a right angled triangle θ represents one of its acute angles then, \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\].
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
