
How do you factor ${x^6} + 125$?
Answer
556.5k+ views
Hint:To order to determine the factors of the above equation ,first rewrite the equation by writing ${x^6}$ as ${\left( {{x^3}} \right)^2}$ using property of exponent \[{a^{m \times n}} = {\left( {{a^m}} \right)^n}\] and $125$ as $5 \times 5 \times 5 = {5^3}$ and then use the formula of sum of two cubes $\left( {{A^3} + {B^3}} \right) = \left( {A + B} \right)\left( {{A^2} - A.B + {B^2}} \right)$ by considering $A$ as ${x^2}$ and $B$ as ${5^3}$.To factorise a quartic part Solve it as $\left( {{a^2} - kab + {b^2}} \right)\left( {{a^2} + kab + {b^2}} \right) = {a^4} + \left( {2 - {k^2}} \right){a^2}{b^2} + {b^4}$by comparing .You’ll get your required factors.
Complete step by step solution:
$\left( {{A^3} - {B^3}} \right) = \left( {A - B} \right)\left( {{A^2} + A.B + {B^2}} \right)$
We are given a mathematical function having variable ($x$),let it be $f(x)$
$f(x) = {x^6} + 125$
To split this expression into its factors ,we will be writing $125$as$5 \times 5 \times 5 = {5^3}$ and using the property of exponents that \[{a^{m \times n}} = {\left( {{a^m}} \right)^n}\]So writing
${x^6}$ as ${\left( {{x^3}} \right)^2}$.$f(x)$ will now become,
$f(x) = {\left( {{x^2}} \right)^3} + {5^3}$
Now we’ll be using the formula of sum of two cube number
$\left( {{A^3} + {B^3}} \right) = \left( {A + B} \right)\left( {{A^2} - A.B + {B^2}} \right)$by considering $A$ as ${x^2}$ and $B$ as ${5^3}$
$
f(x) = \left( {{x^2} + 5} \right)\left( {{{({x^2})}^2} - 5({x^2}) + {5^2}} \right) \\
= \left( {{x^2} + 5} \right)\left( {{x^4} - 5{x^2} + 25} \right) \\
$----(1)
To factorise the Quartic part of the expression we’ll use a different aspect as
$\left( {{a^2} - kab + {b^2}} \right)\left( {{a^2} + kab + {b^2}} \right) = {a^4} + \left( {2 - {k^2}}
\right){a^2}{b^2} + {b^4}$
So, now comparing the result mentioned above ${a^4} + \left( {2 - {k^2}} \right){a^2}{b^2} +
{b^4}$ with our original expression
$
a = x \\
b = \sqrt 5 \\
$
We find that:
$\left( {{x^2} - k\sqrt 5 x + 5} \right)\left( {{x^2} + k\sqrt 5 x + 5} \right) = {x^4} + \left( {2 - {k^2}} \right)5{x^2} + 25$-----(2)
Equating coefficients of ${x^2}$ of the above with the same in equation (1),we get,
$
\left( {2 - {k^2}} \right)5 = - 5 \\
\left( {2 - {k^2}} \right) = - 1 \\
{k^2} = 3 \\
k = \pm \sqrt 3 \\
$
So, putting $k = \pm \sqrt 3 $ in the equation (2)
\[
{x^4} - 5{x^2} + 25 = \left( {{x^2} - \sqrt 3 .\sqrt 5 x + 5} \right)\left( {{x^2} + \sqrt 3 .\sqrt 5 x + 5} \right) \\
= \left( {{x^2} - \sqrt {15} x + 5} \right)\left( {{x^2} + \sqrt {15} x + 5} \right) \\
\]
Putting back the value of \[{x^4} - 5{x^2} + 25\]in equation (1),we finally get,
\[f(x) = \left( {{x^2} + 5} \right)\left( {{x^2} - \sqrt {15} x + 5} \right)\left( {{x^2} + \sqrt {15} x + 5} \right)\]
Therefore, we have successfully factorized $f(x)$ as\[\left( {{x^2} + 5} \right)\left( {{x^2} - \sqrt {15} x + 5} \right)\left( {{x^2} + \sqrt {15} x + 5} \right)\].
Additional Information:
Cubic Equation: A cubic equation is a equation which can be represented in the form of $a{x^3} + b{x^2}cx + d$ where $x$ is the unknown variable and a,b,c,d are the numbers known where $a \ne 0$.If $a = 0$ then the equation will become a quadratic equation and will no longer be cubic
Note:
1. One must be careful while calculating the answer as calculation error may come.
2.Don’t forget to compare the given cubic equation with the standard one every time.
Complete step by step solution:
$\left( {{A^3} - {B^3}} \right) = \left( {A - B} \right)\left( {{A^2} + A.B + {B^2}} \right)$
We are given a mathematical function having variable ($x$),let it be $f(x)$
$f(x) = {x^6} + 125$
To split this expression into its factors ,we will be writing $125$as$5 \times 5 \times 5 = {5^3}$ and using the property of exponents that \[{a^{m \times n}} = {\left( {{a^m}} \right)^n}\]So writing
${x^6}$ as ${\left( {{x^3}} \right)^2}$.$f(x)$ will now become,
$f(x) = {\left( {{x^2}} \right)^3} + {5^3}$
Now we’ll be using the formula of sum of two cube number
$\left( {{A^3} + {B^3}} \right) = \left( {A + B} \right)\left( {{A^2} - A.B + {B^2}} \right)$by considering $A$ as ${x^2}$ and $B$ as ${5^3}$
$
f(x) = \left( {{x^2} + 5} \right)\left( {{{({x^2})}^2} - 5({x^2}) + {5^2}} \right) \\
= \left( {{x^2} + 5} \right)\left( {{x^4} - 5{x^2} + 25} \right) \\
$----(1)
To factorise the Quartic part of the expression we’ll use a different aspect as
$\left( {{a^2} - kab + {b^2}} \right)\left( {{a^2} + kab + {b^2}} \right) = {a^4} + \left( {2 - {k^2}}
\right){a^2}{b^2} + {b^4}$
So, now comparing the result mentioned above ${a^4} + \left( {2 - {k^2}} \right){a^2}{b^2} +
{b^4}$ with our original expression
$
a = x \\
b = \sqrt 5 \\
$
We find that:
$\left( {{x^2} - k\sqrt 5 x + 5} \right)\left( {{x^2} + k\sqrt 5 x + 5} \right) = {x^4} + \left( {2 - {k^2}} \right)5{x^2} + 25$-----(2)
Equating coefficients of ${x^2}$ of the above with the same in equation (1),we get,
$
\left( {2 - {k^2}} \right)5 = - 5 \\
\left( {2 - {k^2}} \right) = - 1 \\
{k^2} = 3 \\
k = \pm \sqrt 3 \\
$
So, putting $k = \pm \sqrt 3 $ in the equation (2)
\[
{x^4} - 5{x^2} + 25 = \left( {{x^2} - \sqrt 3 .\sqrt 5 x + 5} \right)\left( {{x^2} + \sqrt 3 .\sqrt 5 x + 5} \right) \\
= \left( {{x^2} - \sqrt {15} x + 5} \right)\left( {{x^2} + \sqrt {15} x + 5} \right) \\
\]
Putting back the value of \[{x^4} - 5{x^2} + 25\]in equation (1),we finally get,
\[f(x) = \left( {{x^2} + 5} \right)\left( {{x^2} - \sqrt {15} x + 5} \right)\left( {{x^2} + \sqrt {15} x + 5} \right)\]
Therefore, we have successfully factorized $f(x)$ as\[\left( {{x^2} + 5} \right)\left( {{x^2} - \sqrt {15} x + 5} \right)\left( {{x^2} + \sqrt {15} x + 5} \right)\].
Additional Information:
Cubic Equation: A cubic equation is a equation which can be represented in the form of $a{x^3} + b{x^2}cx + d$ where $x$ is the unknown variable and a,b,c,d are the numbers known where $a \ne 0$.If $a = 0$ then the equation will become a quadratic equation and will no longer be cubic
Note:
1. One must be careful while calculating the answer as calculation error may come.
2.Don’t forget to compare the given cubic equation with the standard one every time.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

