
How do you factor ${x^4} - 16$?
Answer
541.8k+ views
Hint: Factorization of any polynomials can be written as the product of its factors having the degree less than or equal to the original polynomial. Here we will use the identity for the difference of two squares twice and will simplify for the resultant required solution.
Complete step-by-step solution:
Square is the number multiplied itself and cube it the number multiplied thrice. Square is the product of same number twice such as ${n^2} = n \times n$ for Example square of $2$ is ${2^2} = 2 \times 2$ simplified form of squared number is ${2^2} = 2 \times 2 = 4$ .
Take the given expression and write the expression in terms of the difference of two squares.
$\Rightarrow {x^4} - 16 = {({x^2})^2} - {(4)^2}$
Now using the difference of squares identity: ${a^2} - {b^2} = (a - b)(a + b)$
$\Rightarrow {x^4} - 16 = ({x^2} - 4)({x^2} + 4)$
Again, using the identity for the difference of two squares in one part of the right hand side of the equation.
$\Rightarrow {x^4} - 16 = [{(x)^2} - {(2)^2}]({x^2} + 4)$
Simplifying the values in the above equation.
$\Rightarrow {x^4} - 16 = ({x^2} + 4)(x + 2)(x - 2)$
This is the required solution.
Additional Information: Know the difference between the squares and square root and apply the concepts accordingly. Square is the number multiplied twice and square-root is denoted by $\sqrt {{n^2}} = \sqrt {n \times n} $ For Example: $\sqrt {{2^2}} = \sqrt 4 = 2$
Note: Always remember the different identities to factorize the polynomials. Always try to convert the polynomials in the form of squares and cubes and then apply its formulas. Constants are the terms with fixed value such as the numbers it can be positive or negative whereas the variables are terms which are denoted by small alphabets such as x, y, z, a, b, etc. Be careful while moving any term from one side to another.
Complete step-by-step solution:
Square is the number multiplied itself and cube it the number multiplied thrice. Square is the product of same number twice such as ${n^2} = n \times n$ for Example square of $2$ is ${2^2} = 2 \times 2$ simplified form of squared number is ${2^2} = 2 \times 2 = 4$ .
Take the given expression and write the expression in terms of the difference of two squares.
$\Rightarrow {x^4} - 16 = {({x^2})^2} - {(4)^2}$
Now using the difference of squares identity: ${a^2} - {b^2} = (a - b)(a + b)$
$\Rightarrow {x^4} - 16 = ({x^2} - 4)({x^2} + 4)$
Again, using the identity for the difference of two squares in one part of the right hand side of the equation.
$\Rightarrow {x^4} - 16 = [{(x)^2} - {(2)^2}]({x^2} + 4)$
Simplifying the values in the above equation.
$\Rightarrow {x^4} - 16 = ({x^2} + 4)(x + 2)(x - 2)$
This is the required solution.
Additional Information: Know the difference between the squares and square root and apply the concepts accordingly. Square is the number multiplied twice and square-root is denoted by $\sqrt {{n^2}} = \sqrt {n \times n} $ For Example: $\sqrt {{2^2}} = \sqrt 4 = 2$
Note: Always remember the different identities to factorize the polynomials. Always try to convert the polynomials in the form of squares and cubes and then apply its formulas. Constants are the terms with fixed value such as the numbers it can be positive or negative whereas the variables are terms which are denoted by small alphabets such as x, y, z, a, b, etc. Be careful while moving any term from one side to another.
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

