
How do you factor \[{x^3} + 27\]?
Answer
549.3k+ views
Hint: In the given question, we have been asked to factorize the given polynomial, which is a combination of the sum of a variable and a constant. This polynomial is a cubic polynomial, i.e., a polynomial of degree three. But, if we see closely, the constant in the polynomial is also a cube. Hence, to simplify the value, we use the formula of sum of two cubes and factorize the given polynomial.
Formula Used:
We are going to use the formula of sum of two cubes:
\[{a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\]
Complete step-by-step answer:
The polynomial to be factored is \[{x^3} + 27\].
Clearly, this polynomial is the sum of two cubes, so we can apply the formula of sum of two cubes,
\[{a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\]
So, \[{x^3} + 27 = {\left( x \right)^3} + {\left( 3 \right)^3} = \left( {x + 3} \right)\left( {{x^2} + 9 - 3x} \right)\].
Additional Information:
The formula for the sum of two numbers whole cubed is \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\]. While the formula for the difference of two numbers whole cubed is \[{\left( {a - b} \right)^3} = {a^3} - {b^3} - 3ab\left( {a - b} \right)\]. Finally, the formula for difference of two cubes is \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\].
Note: We have to see if the cubes are being added or subtracted, as the two things have totally different formulae and getting confused with using any one of them is going to give a wrong answer.
Formula Used:
We are going to use the formula of sum of two cubes:
\[{a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\]
Complete step-by-step answer:
The polynomial to be factored is \[{x^3} + 27\].
Clearly, this polynomial is the sum of two cubes, so we can apply the formula of sum of two cubes,
\[{a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\]
So, \[{x^3} + 27 = {\left( x \right)^3} + {\left( 3 \right)^3} = \left( {x + 3} \right)\left( {{x^2} + 9 - 3x} \right)\].
Additional Information:
The formula for the sum of two numbers whole cubed is \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\]. While the formula for the difference of two numbers whole cubed is \[{\left( {a - b} \right)^3} = {a^3} - {b^3} - 3ab\left( {a - b} \right)\]. Finally, the formula for difference of two cubes is \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\].
Note: We have to see if the cubes are being added or subtracted, as the two things have totally different formulae and getting confused with using any one of them is going to give a wrong answer.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Which of the following does not have a fundamental class 10 physics CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

State BPT theorem and prove it class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

Write the difference between soap and detergent class 10 chemistry CBSE

