
How do you factor \[{x^3} + 27\]?
Answer
548.4k+ views
Hint: In the given question, we have been asked to factorize the given polynomial, which is a combination of the sum of a variable and a constant. This polynomial is a cubic polynomial, i.e., a polynomial of degree three. But, if we see closely, the constant in the polynomial is also a cube. Hence, to simplify the value, we use the formula of sum of two cubes and factorize the given polynomial.
Formula Used:
We are going to use the formula of sum of two cubes:
\[{a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\]
Complete step-by-step answer:
The polynomial to be factored is \[{x^3} + 27\].
Clearly, this polynomial is the sum of two cubes, so we can apply the formula of sum of two cubes,
\[{a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\]
So, \[{x^3} + 27 = {\left( x \right)^3} + {\left( 3 \right)^3} = \left( {x + 3} \right)\left( {{x^2} + 9 - 3x} \right)\].
Additional Information:
The formula for the sum of two numbers whole cubed is \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\]. While the formula for the difference of two numbers whole cubed is \[{\left( {a - b} \right)^3} = {a^3} - {b^3} - 3ab\left( {a - b} \right)\]. Finally, the formula for difference of two cubes is \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\].
Note: We have to see if the cubes are being added or subtracted, as the two things have totally different formulae and getting confused with using any one of them is going to give a wrong answer.
Formula Used:
We are going to use the formula of sum of two cubes:
\[{a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\]
Complete step-by-step answer:
The polynomial to be factored is \[{x^3} + 27\].
Clearly, this polynomial is the sum of two cubes, so we can apply the formula of sum of two cubes,
\[{a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\]
So, \[{x^3} + 27 = {\left( x \right)^3} + {\left( 3 \right)^3} = \left( {x + 3} \right)\left( {{x^2} + 9 - 3x} \right)\].
Additional Information:
The formula for the sum of two numbers whole cubed is \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\]. While the formula for the difference of two numbers whole cubed is \[{\left( {a - b} \right)^3} = {a^3} - {b^3} - 3ab\left( {a - b} \right)\]. Finally, the formula for difference of two cubes is \[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\].
Note: We have to see if the cubes are being added or subtracted, as the two things have totally different formulae and getting confused with using any one of them is going to give a wrong answer.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

