
How do you factor ${{x}^{3}}+729$?
Answer
542.4k+ views
Hint: We first take the factorisation of the given polynomial ${{x}^{3}}+729$ according to the identity ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$. We form the factorisation to find the simplified form of ${{x}^{3}}+729$ by replacing with $a=x;b=9$. We also verify the result with an arbitrary value of $x$.
Complete step by step answer:
The given polynomial ${{x}^{3}}+729$ is cubic expression. We consider ${{x}^{3}}$ as ${{\left( x \right)}^{3}}$ and 729 as ${{9}^{3}}$.
It’s a sum of two cube numbers. We factorise the given sum of the cubes according to the identity ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$.
We have ${{x}^{3}}+729$ and for the theorem we replace the values as $a=x;b=9$
We get \[{{x}^{3}}+729={{\left( x \right)}^{3}}+{{9}^{3}}=\left( x+9 \right)\left[ {{x}^{2}}-9x+81 \right]\].
We can see the term ${{x}^{3}}+729$ is a multiplication of two polynomials \[\left( x+9 \right)\] and \[\left( {{x}^{2}}-9x+81 \right)\].
These terms can’t be factored any more.
The factorisation of ${{x}^{3}}+729$ is \[\left( x+9 \right)\left( {{x}^{2}}-9x+81 \right)\].
Now we verify the result with an arbitrary value of $x=2$.
We have ${{x}^{3}}+729=\left( x+9 \right)\left( {{x}^{2}}-9x+81 \right)$.
The left-hand side of the equation gives ${{x}^{3}}+729={{2}^{3}}+729=8+729=737$.
The left-hand side of the equation gives
$\begin{align}
& \left( x+9 \right)\left( {{x}^{2}}-9x+81 \right) \\
& =\left( 2+9 \right)\left( {{2}^{2}}-9\times 2+81 \right) \\
& =11\times 67 \\
& =737 \\
\end{align}$
Thus, verified the result of ${{x}^{3}}+729=\left( x+9 \right)\left( {{x}^{2}}-9x+81 \right)$.
Note: We explain the process of getting ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$.
We need to find the simplified form of ${{\left( a+b \right)}^{3}}$. This is the cube of sum of two numbers.
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
We need to multiply the term $\left( a+b \right)$ on both side of the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
On the left side of the equation, we get ${{\left( a+b \right)}^{2}}\left( a+b \right)={{\left( a+b \right)}^{3}}$.
On the right side we have $\left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right)$. We use multiplication and get
$\begin{align}
& \Rightarrow \left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right) \\
& ={{a}^{2}}.a+a.{{b}^{2}}+2ab\times a+{{a}^{2}}.b+{{b}^{2}}.b+2ab.b \\
& ={{a}^{3}}+a{{b}^{2}}+2{{a}^{2}}b+{{a}^{2}}b+{{b}^{3}}+2a{{b}^{2}} \\
& ={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} \\
\end{align}$
We also can take another form where
${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$.
This gives
$\begin{align}
& {{a}^{3}}+{{b}^{3}} \\
& ={{\left( a+b \right)}^{3}}-3ab\left( a+b \right) \\
& =\left( a+b \right)\left[ {{\left( a+b \right)}^{2}}-3ab \right] \\
& =\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \\
\end{align}$
Complete step by step answer:
The given polynomial ${{x}^{3}}+729$ is cubic expression. We consider ${{x}^{3}}$ as ${{\left( x \right)}^{3}}$ and 729 as ${{9}^{3}}$.
It’s a sum of two cube numbers. We factorise the given sum of the cubes according to the identity ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$.
We have ${{x}^{3}}+729$ and for the theorem we replace the values as $a=x;b=9$
We get \[{{x}^{3}}+729={{\left( x \right)}^{3}}+{{9}^{3}}=\left( x+9 \right)\left[ {{x}^{2}}-9x+81 \right]\].
We can see the term ${{x}^{3}}+729$ is a multiplication of two polynomials \[\left( x+9 \right)\] and \[\left( {{x}^{2}}-9x+81 \right)\].
These terms can’t be factored any more.
The factorisation of ${{x}^{3}}+729$ is \[\left( x+9 \right)\left( {{x}^{2}}-9x+81 \right)\].
Now we verify the result with an arbitrary value of $x=2$.
We have ${{x}^{3}}+729=\left( x+9 \right)\left( {{x}^{2}}-9x+81 \right)$.
The left-hand side of the equation gives ${{x}^{3}}+729={{2}^{3}}+729=8+729=737$.
The left-hand side of the equation gives
$\begin{align}
& \left( x+9 \right)\left( {{x}^{2}}-9x+81 \right) \\
& =\left( 2+9 \right)\left( {{2}^{2}}-9\times 2+81 \right) \\
& =11\times 67 \\
& =737 \\
\end{align}$
Thus, verified the result of ${{x}^{3}}+729=\left( x+9 \right)\left( {{x}^{2}}-9x+81 \right)$.
Note: We explain the process of getting ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$.
We need to find the simplified form of ${{\left( a+b \right)}^{3}}$. This is the cube of sum of two numbers.
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
We need to multiply the term $\left( a+b \right)$ on both side of the identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
On the left side of the equation, we get ${{\left( a+b \right)}^{2}}\left( a+b \right)={{\left( a+b \right)}^{3}}$.
On the right side we have $\left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right)$. We use multiplication and get
$\begin{align}
& \Rightarrow \left( {{a}^{2}}+{{b}^{2}}+2ab \right)\left( a+b \right) \\
& ={{a}^{2}}.a+a.{{b}^{2}}+2ab\times a+{{a}^{2}}.b+{{b}^{2}}.b+2ab.b \\
& ={{a}^{3}}+a{{b}^{2}}+2{{a}^{2}}b+{{a}^{2}}b+{{b}^{3}}+2a{{b}^{2}} \\
& ={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} \\
\end{align}$
We also can take another form where
${{\left( a+b \right)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)$.
This gives
$\begin{align}
& {{a}^{3}}+{{b}^{3}} \\
& ={{\left( a+b \right)}^{3}}-3ab\left( a+b \right) \\
& =\left( a+b \right)\left[ {{\left( a+b \right)}^{2}}-3ab \right] \\
& =\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \\
\end{align}$
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW


