
How do you factor \[4{x^4} + 81\]?
Answer
479.1k+ views
Hint: We have to find the factor of \[4{x^4} + 81\]. Since, the highest power of \[x\] is four. \[4{x^4} + 81\] will have four roots. To find the roots we will take the square root of \[{x^4}\] to find \[{x^2}\], then the square root of \[{x^2}\] to find the values of \[x\]. We will express the roots in terms of the imaginary unit \[i\] and we will use its properties to simplify the expression. Then at last, we will express all the roots say \[a\], \[b\], \[c\] and \[d\] as \[(x - a)(x - b)(x - c)(x - d)\] which is the factor of \[4{x^4} + 81\].
Complete step by step answer:
Given, \[4{x^4} + 81\].
To find the factor we can write it as
\[ \Rightarrow 4{x^4} + 81 = 0\]
Subtracting \[81\] from both the sides, we get
\[ \Rightarrow 4{x^4} = - 81\]
Dividing both the sides by \[4\], we get
\[ \Rightarrow {x^4} = \dfrac{{ - 81}}{4}\]
Taking square roots of both the sides, we get
\[ \Rightarrow {x^2} = \sqrt {\dfrac{{ - 81}}{4}} \]
On rewriting we get
\[ \Rightarrow {x^2} = \sqrt { - 1} \times \sqrt {\dfrac{{81}}{4}} \]
As we know, \[i = \sqrt { - 1} \]. Using this we get,
\[ \Rightarrow {x^2} = \pm \dfrac{9}{2}i\]
Now as we know,
\[ \Rightarrow \pm \sqrt i = \pm \dfrac{{1 + i}}{{\sqrt 2 }}\]
Multiplying \[\sqrt {\dfrac{9}{2}} \] on both the sides, we get
\[ \Rightarrow \pm \sqrt {\dfrac{9}{2}i} = \pm \sqrt {\dfrac{9}{2}} \dfrac{{1 + i}}{{\sqrt 2 }}\]
On simplifying we get
\[ \Rightarrow \pm \sqrt {\dfrac{9}{2}i} = \pm \dfrac{{3 + 3i}}{2}\]
Similarly,
\[ \Rightarrow \pm \sqrt { - \dfrac{9}{2}i} = \pm \left( i \right) \times \sqrt {\dfrac{9}{2}i} \]
On simplifying we get
\[ \Rightarrow \pm \sqrt { - \dfrac{9}{2}i} = \pm \dfrac{{i\left( {3 + 3i} \right)}}{2}\]
On further simplification and using \[{i^2} = - 1\], we get
\[ \Rightarrow \pm \sqrt { - \dfrac{9}{2}i} = \pm \dfrac{{3i - 3}}{2}\]
Therefore, we can write \[4{x^4} + 81\] as
\[ \Rightarrow 4{x^4} + 81 = 4\left( {x + \dfrac{{3 + 3i}}{2}} \right)\left( {x + \dfrac{{3 - 3i}}{2}} \right)\left( {x - \dfrac{{3 + 3i}}{2}} \right)\left( {x - \dfrac{{3 - 3i}}{2}} \right)\],
\[ \Rightarrow 4{x^4} + 81 = 4\left( {x + \dfrac{3}{2} + \dfrac{{3i}}{2}} \right)\left( {x + \dfrac{3}{2} - \dfrac{{3i}}{2}} \right)\left( {x - \dfrac{3}{2} - \dfrac{{3i}}{2}} \right)\left( {x - \dfrac{3}{2} + \dfrac{{3i}}{2}} \right)\]
Using the identity \[{a^2} - {b^2} = (a - b)(a + b)\], we get
\[ \Rightarrow 4{x^4} + 81 = 2\left( {{{\left( {x + \dfrac{3}{2}} \right)}^2} - {{\left( {\dfrac{{3i}}{2}} \right)}^2}} \right) \times 2\left( {{{\left( {x - \dfrac{3}{2}} \right)}^2} - {{\left( {\dfrac{{3i}}{2}} \right)}^2}} \right)\]
On simplification and using \[{i^2} = - 1\], we get
\[ \Rightarrow 4{x^4} + 81 = \left( {2{x^2} - 6x + 9} \right)\left( {2{x^2} + 6x + 9} \right)\]
Therefore, factor of \[4{x^4} + 81\] is \[\left( {2{x^2} - 6x + 9} \right)\left( {2{x^2} + 6x + 9} \right)\].
Note:
We can also solve this problem by another method in which we will use different identities to simplify.
Given, \[4{x^4} + 81\].
We can write \[81\] as \[{3^4}\].
\[ \Rightarrow 4{x^4} + 81 = 4{x^4} + {3^4}\]
On rewriting we get,
\[ \Rightarrow 4{x^4} + 81 = {\left( {2{x^2}} \right)^2} + {\left( 9 \right)^2}\]
As, \[{a^2} + {b^2} = {(a + b)^2} - 2ab\], using this we can write
\[ \Rightarrow 4{x^4} + 81 = {\left( {2{x^2} + 9} \right)^2} - 2 \times 2{x^2} \times 9\]
On simplifying we get,
\[ \Rightarrow 4{x^4} + 81 = {\left( {2{x^2} + 9} \right)^2} - 36{x^2}\]
On rewriting we get,
\[ \Rightarrow 4{x^4} + 81 = {\left( {2{x^2} + 9} \right)^2} - {\left( {6x} \right)^2}\]
Using the identity, \[{a^2} - {b^2} = (a - b)(a + b)\] we get
\[ \Rightarrow 4{x^4} + 81 = \left( {2{x^2} + 9 - 6x} \right)\left( {2{x^2} + 9 + 6x} \right)\]
On rewriting we get,
\[ \Rightarrow 4{x^4} + 81 = \left( {2{x^2} - 6x + 9} \right)\left( {2{x^2} + 6x + 9} \right)\]
Therefore, factor of \[4{x^4} + 81\] is \[\left( {2{x^2} - 6x + 9} \right)\left( {2{x^2} + 6x + 9} \right)\].
Complete step by step answer:
Given, \[4{x^4} + 81\].
To find the factor we can write it as
\[ \Rightarrow 4{x^4} + 81 = 0\]
Subtracting \[81\] from both the sides, we get
\[ \Rightarrow 4{x^4} = - 81\]
Dividing both the sides by \[4\], we get
\[ \Rightarrow {x^4} = \dfrac{{ - 81}}{4}\]
Taking square roots of both the sides, we get
\[ \Rightarrow {x^2} = \sqrt {\dfrac{{ - 81}}{4}} \]
On rewriting we get
\[ \Rightarrow {x^2} = \sqrt { - 1} \times \sqrt {\dfrac{{81}}{4}} \]
As we know, \[i = \sqrt { - 1} \]. Using this we get,
\[ \Rightarrow {x^2} = \pm \dfrac{9}{2}i\]
Now as we know,
\[ \Rightarrow \pm \sqrt i = \pm \dfrac{{1 + i}}{{\sqrt 2 }}\]
Multiplying \[\sqrt {\dfrac{9}{2}} \] on both the sides, we get
\[ \Rightarrow \pm \sqrt {\dfrac{9}{2}i} = \pm \sqrt {\dfrac{9}{2}} \dfrac{{1 + i}}{{\sqrt 2 }}\]
On simplifying we get
\[ \Rightarrow \pm \sqrt {\dfrac{9}{2}i} = \pm \dfrac{{3 + 3i}}{2}\]
Similarly,
\[ \Rightarrow \pm \sqrt { - \dfrac{9}{2}i} = \pm \left( i \right) \times \sqrt {\dfrac{9}{2}i} \]
On simplifying we get
\[ \Rightarrow \pm \sqrt { - \dfrac{9}{2}i} = \pm \dfrac{{i\left( {3 + 3i} \right)}}{2}\]
On further simplification and using \[{i^2} = - 1\], we get
\[ \Rightarrow \pm \sqrt { - \dfrac{9}{2}i} = \pm \dfrac{{3i - 3}}{2}\]
Therefore, we can write \[4{x^4} + 81\] as
\[ \Rightarrow 4{x^4} + 81 = 4\left( {x + \dfrac{{3 + 3i}}{2}} \right)\left( {x + \dfrac{{3 - 3i}}{2}} \right)\left( {x - \dfrac{{3 + 3i}}{2}} \right)\left( {x - \dfrac{{3 - 3i}}{2}} \right)\],
\[ \Rightarrow 4{x^4} + 81 = 4\left( {x + \dfrac{3}{2} + \dfrac{{3i}}{2}} \right)\left( {x + \dfrac{3}{2} - \dfrac{{3i}}{2}} \right)\left( {x - \dfrac{3}{2} - \dfrac{{3i}}{2}} \right)\left( {x - \dfrac{3}{2} + \dfrac{{3i}}{2}} \right)\]
Using the identity \[{a^2} - {b^2} = (a - b)(a + b)\], we get
\[ \Rightarrow 4{x^4} + 81 = 2\left( {{{\left( {x + \dfrac{3}{2}} \right)}^2} - {{\left( {\dfrac{{3i}}{2}} \right)}^2}} \right) \times 2\left( {{{\left( {x - \dfrac{3}{2}} \right)}^2} - {{\left( {\dfrac{{3i}}{2}} \right)}^2}} \right)\]
On simplification and using \[{i^2} = - 1\], we get
\[ \Rightarrow 4{x^4} + 81 = \left( {2{x^2} - 6x + 9} \right)\left( {2{x^2} + 6x + 9} \right)\]
Therefore, factor of \[4{x^4} + 81\] is \[\left( {2{x^2} - 6x + 9} \right)\left( {2{x^2} + 6x + 9} \right)\].
Note:
We can also solve this problem by another method in which we will use different identities to simplify.
Given, \[4{x^4} + 81\].
We can write \[81\] as \[{3^4}\].
\[ \Rightarrow 4{x^4} + 81 = 4{x^4} + {3^4}\]
On rewriting we get,
\[ \Rightarrow 4{x^4} + 81 = {\left( {2{x^2}} \right)^2} + {\left( 9 \right)^2}\]
As, \[{a^2} + {b^2} = {(a + b)^2} - 2ab\], using this we can write
\[ \Rightarrow 4{x^4} + 81 = {\left( {2{x^2} + 9} \right)^2} - 2 \times 2{x^2} \times 9\]
On simplifying we get,
\[ \Rightarrow 4{x^4} + 81 = {\left( {2{x^2} + 9} \right)^2} - 36{x^2}\]
On rewriting we get,
\[ \Rightarrow 4{x^4} + 81 = {\left( {2{x^2} + 9} \right)^2} - {\left( {6x} \right)^2}\]
Using the identity, \[{a^2} - {b^2} = (a - b)(a + b)\] we get
\[ \Rightarrow 4{x^4} + 81 = \left( {2{x^2} + 9 - 6x} \right)\left( {2{x^2} + 9 + 6x} \right)\]
On rewriting we get,
\[ \Rightarrow 4{x^4} + 81 = \left( {2{x^2} - 6x + 9} \right)\left( {2{x^2} + 6x + 9} \right)\]
Therefore, factor of \[4{x^4} + 81\] is \[\left( {2{x^2} - 6x + 9} \right)\left( {2{x^2} + 6x + 9} \right)\].
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

